Supporting Information 1 2 Biomagnification of mercury in mollusks from coastal 3 areas of the Chinese Bohai Sea 4 5 6 Mei Meng^a, Jian-bo Shi ^{a, b, *}, Cheng-bin Liu^a, Na-li Zhu^a, Jun-juan Shao^a, 7 Bin He^a, Yong Cai^{b, c}, Gui-bin Jiang^a 8 9 10 ^aState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for 11 Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 12 ^bInstitute of Environment and Health, Jianghan University, Wuhan 430056, China 13 ^cDepartment of Chemistry & Biochemistry and Southeast Environmental Research Center, 14 15 Florida International University, Miami, Florida 33199, USA 16 17 18 * Corresponding author 19 Tel/fax: +86-10-62849129 20 E-mail: jbshi@rcees.ac.cn 21 22

Analysis of Hg. For THg analysis, approximately 0.05-0.1 g of the mollusk tissue was
weighed into a nickel boat, completely covered with an appropriate amount of diatomite and
directly detected using the Hydra-C mercury analyzer (Teledyne Leeman Labs, USA)
following USEPA method 7473.

For MeHg analysis, KOH/CH₃OH solution was used for MeHg extraction. Approximately 0.1 g of soft tissue was transferred into a 8-mL brown glass container and extracted with 4 mL of 25% (m/v) KOH/CH₃OH solution by shaking for 4 h at 37 °C and 240 rpm with a shaker. The digested solution was then diluted with CH₃OH to the appropriate concentration for determination. The concentrations of MeHg were determined with a MERX Automatic Methylmercury System (Brooks Rand Laboratories, Seattle, WA) following USEPA method 1630.

36 Table S1. Lipid Content, Trophic Level (TL), THg and MeHg Concentrations of 37 Mollusks Collected from Bohai Sea in 2009 and 2012 (Mean ± SD)

38

Spacios	Class	Order	N	Lipid content	N	TI	THg	МеНд	
species	Class			(% d.w.)	IN	IL	(µg kg ⁻¹ d.w.)	(µg kg ⁻¹ d.w.)	
Amu	Bivalvia	Pterioida	9	11.01 ± 3.05	15	3.13±0.16	70.0 ± 29.7	27.5±16.8	
Chl	Bivalvia	Pterioida	7	14.03 ± 2.55	16	3.07±0.22	104.0±53.2	39.5±18.7	
Cyc	Bivalvia	Veneroida	7	7.51 ± 1.99	14	3.02 ± 0.25	56.8±21.1	16.3±8.9	
Mac	Bivalvia	Veneroida	4	7.93 ± 0.64	8	2.95±0.54	67.6±51.9	32.3±55.7	
Mer	Bivalvia	Veneroida	9	13.55 ± 1.80	20	2.61±0.74	46.5±13.2	14.2±9.5	
Mya	Bivalvia	Myoida	6	11.34±0.89	8	2.74±0.29	83.9±45.8	26.2±18.4	
Myt	Bivalvia	Mytioida	4	15.50 ± 0.53	10	2.72±0.35	79.9±45.5	16.8±15.1	
Ost	Bivalvia	Veneroida	7	15.71±2.22	10	2.97±0.51	96.2±63.7	44.0±21.2	
Sca	Bivalvia	Arcoida	8	13.21±4.54	17	3.08±0.49	72.8±43.0	12.5 ± 10.0	
Nev	Prosobranchia	Gastropoda	10	6.18±1.72	18	3.28±0.19	107.4±57.4	68.6±34.9	
Rap	Prosobranchia	Gastropoda	21	6.99±1.76	39	3.33±0.28	130.7±64.5	91.7±62.6	
Total			92	10.41 ± 4.05	175	3.05±0.45	89.6±55.7	43.8±46.4	

Amu, Amusium veneriformis; Chl, Chlamys farreri; Cyc, Cyclina sinensis; Mac, Mactra
veneriformis; Mer, Meretix meretrix; Mya, Mya arenaria; Myt, Mytilus edulis; Ost,
Crassostrea talienwhanensis; Sca, Scapharca subcrenata; Nev, Neverita didyma; Rap,
Rapana venosa.

44 Table S2. Results for the Analysis of Certified Reference Materials (CRMs) (µg kg⁻¹)

45

CRM	6	Description	N -	Tł	Ig	МеНg		
	Source			Obtained value	Certified value	Obtained value	Certified value	
TORT-2	NRCC ¹	Lobster Hepatopancreas	4	269.2±13.2	270±60	126.9±5.3	152±13	
DORM-3	NRCC	Fish Protein	5	369.4±14.9	382±60	329.6±17.9	355±56	
DORM-4	NRCC	Fish Protein	4	394.2±6.1	410±55	339.5±10.4	354±31	

46 ¹NRCC—National Research Council Canada

48 Table S3. Concentrations of THg and MeHg and %MeHg in the Mollusk Samples from

49 Bohai Sea during 2007-2012

50

Mallaalaa	N	THg (µg kg ⁻¹)				MeHg (µg kg ⁻¹)				%MeHg			
WOHUSKS		Mean	Median	Min	Max	Mean	Median	Min	Max	Mean	Median	Min	Max
Amu	38	89.7	89.7	44.6	226.4	35.8	30.1	9.1	121.2	40.1	36.9	8.3	92.2
Chl	33	108.9	93.7	35.9	244.4	38.7	34.4	9.6	90.6	38.3	37.1	11.9	70.7
Cyc	32	62.9	59.4	32.0	132.6	20.3	19.2	5.5	57.0	33.8	32.8	8.8	74.9
Mac	25	86.8	61.9	35.7	203.7	32.6	16.9	5.5	169.8	35.3	25.7	11.6	92.6
Mer	56	59.4	54.1	27.2	140.5	22.3	17.4	3.5	59.7	37.6	29.7	6.6	94.2
Mya	16	96.4	81.6	42.0	217.7	34.1	25.6	7.4	95.4	32.5	32.9	16.3	48.4
Myt	30	100.8	80.9	27.7	274.5	20.0	14.4	2.6	64.4	21.3	20.0	4.2	59.1
Ost	40	105.8	103.5	32.4	242.3	46.1	42.7	12.7	97.5	49.5	42.8	12.7	92.5
Sca	43	88.1	76.4	36.9	211.8	19.2	15.3	2.1	104.5	21.1	17.2	5.7	57.0
Nev	35	91.4	79.6	36.5	261.2	50.2	44.1	12.4	138.7	57.3	59.4	15.6	95.1
Rap	83	151.1	125.2	53.9	461.1	102.6	83.6	14.3	295.5	65.8	68.7	21.7	95.8
Total	431	99.4	80.9	27.2	461.1	45.1	29.4	2.1	295.5	42.6	37.2	4.2	95.8

53 Table S4. Concentrations of Hg species (µg kg⁻¹) in Mollusks from Different Areas in the

54 World

S maailaa	Location		TUa	Malla	Referenc	
Species	Location		IHg	Meng	e	
Zebra mussel	Lakes in the USA	d.w.	529.0±78.0		1	
Oyster	Te'rminos Lagoon, Mexico	d.w.	880.0(400.0-2000.0)		2	
Oyster	Coastal lagoons, SE Gulf of California, Mexico	d.w.	700.0(60.0-910.0)		3	
Oyster	Gulf of Mexico	d.w.	30.0-500.0	10.0-200.0	4	
Mussel/Ouster	French Coast	dw	147.0±62.0	64.0±35.0	5	
Wiussel/Oystei	Thenen Coast	u.w.	(39.0-437.0)	(8.0-238.0)	5	
Mollusk	Gulf of Taranto Italy	d	626.0(21.0-1403.0)	176.4(n.d377.0)	6	
Wollusk	Guil of Taranto, Italy	u.w.	1019.0(224.0-1867.0)	524.4(37.0-1321.0)	0	
Mangrove Oyster	North Coast of Villa Clara, Cuba	d.w.	190.0-690.0		7	
Common mussel			76.0±7.1	48.0±5.1	0	
Mangrove Oyster	Sepetiba Bay, Brazil	d.w.	19.0±3.6	6.9±0.4	8	
		d.w.	154.0±60.0		0	
Oyster	Ceara River, Brazil		(56.0-300.0)		9	
Oyster/Clam /Mussel	Todos os Santos Bay, Bahia, Brazil	d.w.	<30.0-350.0		10	
Mollusk	Kastela Bay, Adriatic Sea	d.w.	138.0-325.0	30.3-59.3	11	
Mollusk	Mar Piccolo, Ionian Sea	d.w.	200.0(110.0-290.0)		12	
Mussel	Southern Baltic Sea	d.w.	110.0±10.0		13	
Cupped oyster			32.0(5.0-90.0)	13.0(2.0-36.0)		
European flat oyster	Mediterranean Sea	W.W	30.0(5.0-470.0)	12.0(2.0-188.0)	14	
Mediterranean mussel			40.0(20.0-60.0)	16.0(8.0-24.0)		
Blue mussel	West Greenland	d.w.	60.0±30.0	11.0±2.0	15	
Mussel	Krka Estuary, Croatia	w.w	14.0-33.0	3.8-9.1	16	
Bivalve	Turkey	W.W	<lod-120.0< td=""><td></td><td>17</td></lod-120.0<>		17	
Rocky oyster	Coast of Qeshm Island, Persian Gulf, Iran	d.w.	50.7		18	
Blue Mussel	Magan Day, Varaa	dw	20.0±7.0	8.8±5.4	10	
Washington clam	Masali Day, Kolea	u.w.	34.0±4.5	16.0±3.5	19	
Mollusk	Markets throughout Korea	d.w.	51.0		20	
Mollusk	Coastal area of Guangdong,		13.9±9.3		21	
WOIIUSK	China		(1.8-53.3)		<i>∠</i> 1	
Marine bivalve	East Coasts of Hong Kong, China	d.w.	30.2-91.9	8.9-18.8	22	

Mussel/Clam/Oyster	Bohai Sea, China	W.W	6.7-453.0	4.8-168.4	23
Marine bivalve	Dalian City, China	d.w.	70.0-350.0		24
Mollusk	Bohai Sea, China	d.w.	99.4(27.2-461.1)	45.1(2.1-295.5)	This work

- 78 Sea.

83 Figure S4. Percentages of MeHg in THg in 11 mollusk species.

88 Figure S5. Relations between log[Hg] and trophic level (TL).

101 Figure S7. Relations between concentrations of THg and lipid content.

108 Figure S8. Dendrogram derived from the hierarchical cluster analysis by using the data109 matrix of THg (a) and MeHg (b) in mollusks.

References

- 113 1 B. D. Blackwell, C. T. Driscoll, M. E. Spada, S. G. Todorova, M. R. Montesdeoca, *Environ. Toxicol. Chem.*, 2013, **32 (3)**, 638-643.
- 115 2 C. A. Aguilar, C. Montalvo, L. Rodríguez, J. G. Cerón, R. M. Cerón, *Int. J. Environ. Sci. Technol.*, 2012,
 9, 579-586.
- 117 3 C. C. Osuna-Martínez, F. Páez-Osuna, R. Alonso-Rodríguez, *Bull. Environ. Contam. Toxicol.*, 2010, 85,
 118 339-343.
- 119 4 D. A. Apeti, G. G. Lauenstein, D. W. Evans, Mar. Pollut. Bull., 2012, 64, 2399-2408.
- 120 5 D. Claisse, D. Cossa, J. Bretaudeau-Sanjuan, G. Touchard, B. Bombled, *Mar. Pollut. Bull.*, 2001, 42,
 121 329-332.
- 6 L. Spada, C. Annicchiarico, N. Cardellicchio, S. Giandomenico, A. Di Leo, *Int. J. Hyg. Environ. Health.*,
 2012, 215, 418-426.
- 124 7 S. Olivares-Rieumont, L. Lima, S. Rivero, D. W. Graham, C. Alonso-Hernandez, Y. Bolaño, *Bull. Environ. Contam. Toxicol.*, 2012, 88, 589-593.
- 126 8 H. A. Kehrig, M. Costa, I. Moreira, O. Malm, J. Braz. Chem. Soc., 2006, 17, 1409-1418.
- 127 9 A. Vaisman, R. Marins, L. Lacerda, Bull. Environ. Contam. Toxicol., 2005, 74, 582-588.
- 128 10 M. M. Souza, C. C. Windmöller, V. Hatje, Mar. Pollut. Bull., 2011, 62, 2254-2263.
- 11 Z. Kljaković-Gašpić, N. Odžak, I. Ujević, T. Zvonarić, M. Horvat, A. Barić, *Sci. Total Environ.*, 2006,
 368, 199-209.
- 131 12 N. Cardellicchio, C. Annicchiarico, G. Assennato, M. Blonda, A. Di Leo, S. Giandomenico, L. Lopez, L.
- 132 Spada, N. Ungaro, Fresenius Environ. Bull., 2010, 19 (9), 1841-1847.
- 133 13 H. Dabrowska, O. Kopko, R. Turja, K. K. Lehtonen, A. Góra, L. Polak-Juszczak, J. Warzocha, S.
- 134 Kholodkevich, Mar. Environ. Res., 2013, 84, 1-9.
- 135 14 G. Brambilla, M. C. Abete, G. Binato, E. Chiaravalle, M. Cossu, E. Dellatte, R. Miniero, R. Orletti, P.
- 136 Piras, A. Roncarati, A. Ubaldi, G. Chessa, Regul. Toxicol. Pharmacol., 2013, 65, 269-277.
- 137 15 F. Rigét, P. Møller, R. Dietz, T. G. Nielsen, G. Asmund, J. Strand, M. M. Larsen, K. A. Hobson, J.
- 138 Environ. Monit., 2007, 9, 877-883.
- 139 16 N. Mikac, Ž. Kwokal, D. Martinčić, M. Branica, *Sci. Total Environ.*, 1996, **184**, 173-182.
- 140 17 S. Colakoglu, G. Ulukoy, H. B. Ormanci, F. A. Colakoglu, Food Addit. Contam: Part B., 2012, 5 (4),

- 141 272-278.
- 142 18 G. Shirneshan, A. R. Bakhtiari, A. Kazemi, M. Mohamadi, N. Kheirabadi, *Bull. Environ. Contam.*143 *Toxicol.*, 2012, 88, 962-966.
- 144 19 E. Kim, H. Kim, K. Shin, M. Kim, S. R. Kundu, B. Lee, S. Han, *Environ. Toxicol. Chem.*, 2012, **31 (6)**,
 145 1254-1263.
- 146 20 J. H. Kim, J. Y. Lee, J. E. Seo, J. Y. Jeong, K. K. Jung, H. J. Yoon, K. S. Park, *Food Addit. Contam:*147 *Part B.*, 2012, **5 (4)**, 260-264.
- 148 21 P. Li, X. B. Feng, P. Liang, H. M. Chan, H. Y. Yan, L. G. Chen, *Environ. Toxicol. Chem.*, 2013, **32 (3)**,
 541-547.
- 150 22 K. Pan, W. X. Wang, Environ. Pollut., 2011, 159, 2500-2506.
- 151 23 L. N. Liang, J. B. Shi, B. He, G. B. Jiang, C. G. Yuan, J. Agric. Food Chem., 2003, 51, 7373-7378.
- 152 24 L. Q. Zhao, F. Yang, X. W. Yan, Hum. Ecol. Risk Assess., 2013, 19, 145-150.