Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Highly-ordered Maghemite/Reduced Graphene Oxide Nanocomposites for High-performance Photoelectrochemical Water Splitting

Sundaram Chandrasekaran^a, Seung Hyun Hur^{a*}, Eui Jung Kim^a, Balasubramaniyan Rajagopalan^a, Kadumudi Firoz Babu^a, Velusamy Senthilkumar^b, Jin Suk Chung^a, Won Mook Choi^aand Yong Soo Kim^b

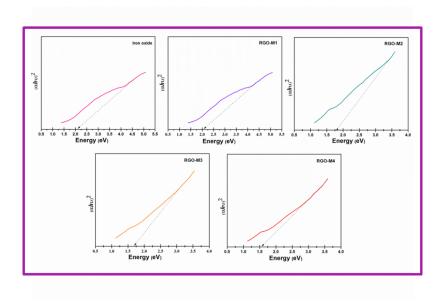


Fig S1. The Band gap calculation of Iron oxide and RGO/ γ -Fe₂O₃ samples

^a School of Chemical Engineering, University of Ulsan, Daehak-ro, 102, Nam-gu, Ulsan 680-749, South Korea. Fax: +82 52 259 1689; Tel:+82 52 259 1028;

^b Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749, South Korea.

^{*}Corresponding Authors: shhur@ulsan.ac.kr (Seung Hyun Hur)

Fig S2. XPS spectra of RGO/γ-Fe₂O₃ samples

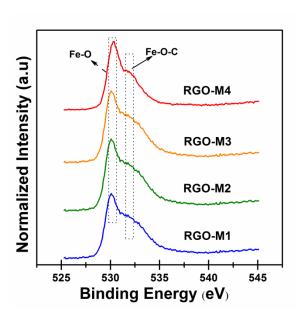


Fig S3. XPS - O1s core level spectra of RGO/ γ -Fe $_2$ O $_3$ samples

Table S1: Binding energy (B.E.) of Fe-O and Fe-O-C bonds in O 1s spectra

Samples	Binding Energy (eV) values by present work		Reported B.E (eV)		Ref
	Fe-O bond	Fe-O-C bond	Fe-O bond	Fe-O-C bond	
RGO-M1	529.96	531.84	529.8	531.2	18
RGO-M2	530.07	531.96	530.3	531.7	48
RGO-M3	530.08	532.03	530.3	531.7	48
RGO-M4	530.31	532.15	530.3	531.7	48