
S1

Electronic Supplementary Information for:

Thermally stable phosphorus and nickel modified ZSM-5 zeolites for 

catalytic co-pyrolysis of biomass and plastics

Weikun Yao a,b, Jian Li a, Yu Feng a, Wei Wang a, Xianlong Zhang b, Qun Chen c, 

Sridhar Komarneni c, Yujue Wang a,*

a School of Environment, State Key Joint Laboratory of Environmental Simulation 

and Pollution Control, Tsinghua University, Beijing 100084, China

b School of Chemistry and Chemical Engineering, Hefei University of Technology, 

Hefei 230009, China

c Key laboratory for Thermal Science and Power Engineering of Ministry of 

Education, Department of Thermal Engineering, Tsinghua University, Beijing 

100084, China

d Materials Research Institute, Materials Research Laboratory, The Pennsylvania State 

University, University Park, PA 16802, USA

*Corresponding author at: School of Environment, Tsinghua University, Beijing 

100084, China. Telephone: 86-10-62772914; Fax: 86-10-62785687. E-mail address: 

wangyujue@tsinghua.edu.cn.

1. Catalyst-to-reactant ratios used in catalytic fast pyrolysis processes

CDS pyroprobes are commonly used in lab-scale CFP studies mainly to screen 

catalysts and investigate reaction mechanisms.1-4 Because the reactors of CDS 

pyroprobes can hold only tiny amounts of samples (several micrograms), high catalyst-

to-sample ratios (e.g., 10–20) are required to ensure that biomass- and plastic-derived 

volatile intermediates can then be effectively converted to final products (e.g., olefins 

and aromatic hydrocarbons) within the catalyst framework before the volatile 
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intermediates escape from the reactor.4-6 It should be noted that the catalyst-to-reactant 

ratios used for CDS pyroprobe CFP tests are considerably higher than those used for 

industrial CFP processes. For example, some pilot-scale fluidized bed reactors have 

recently been developed for continuous CFP operations, in which biomass and catalysts 

are continuously added into and removed from the reactors.7-10 The removed catalysts 

are then regenerated by burning off coke deposit in air and reused in subsequent CFP 

cycles. The catalyst-to-biomass ratio, which is defined as the ratio between catalyst and 

biomass feeding rates, is usually between 3 and 9 in these pilot-scale studies.7, 9, 10 

2. Effects of phosphorus and nickel loading on CFP of pine wood and LDPE 

mixture

A series of phosphorus (P) and phosphorus/nickel (P/Ni) modified ZSM-5 zeolites 

were prepared by impregnation of a conventional ZSM-5 zeolite with P (1–3 wt.%) and 

subsequent Ni (1–3 wt.%). The actual P and Ni contents on the catalysts after 

calcination (i.e., before the catalysts were used for CFP tests) were measured by X-ray 

fluorescence (XRF) technique and shown in Table S1. 

Table S1
Phosphorus and nickel contents of the zeolites used in this study.

Loading used in impregnation (wt.%) Actual loading after  calcinationa 
(wt.%)Sample SiO2/Al2O3

P Ni P Ni
ZSM-5 37.7 - - - -
1%P-ZSM-5 38.8 1 - 0.91 -
2%P-ZSM-5 38.2 2 - 1.54 -
3%P-ZSM-5 38.0 3 - 3.03 -
5%P-ZSM-5 38.3 5 - 4.96 -
3%P/1%Ni-ZSM-5 39.7 3 1 1.79 1.05
3%P/2%Ni-ZSM-5 39.7 3 2 1.87 1.96
3%P/3%Ni-ZSM-5 38.8 3 3 2.04 3.07

a Measured by XRF analysis.

Fig. S1 shows that the aromatic yield in co-feed CFP of pine wood and LDPE 

mixture (mass ratio of 2) went through a maximum at a phosphorus (P) loading of 2 

wt.%. Further increasing P loading over ZSM-5 to 5 wt.% resulted in a considerable 

decrease in the aromatic yield. This result indicates that ZSM-5 impregnation with 

appropriate amounts of P can improve aromatic production in co-feed CFP of biomass 

and LDPE. However, overloading P can cause significant decrease in the catalytic 

activity of ZSM-5 due to severe pore blockage and acidity decrease of the zeolites.11-13 
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Fig. S1. Effects of phosphorus loading over P-ZSM-5 on aromatic production in co-

feed catalytic fast pyrolysis of pine wood and LDPE mixture (mass ratio of 2). 

Fig. S2 shows that subsequent impregnation of P-modified ZSM-5 zeolites with Ni 

can further enhance aromatic production in co-feed CFP. This improvement is probably 

because Ni modification can increase the dehydrogenation activity of zeolites, thus 

enhancing olefin transformation to aromatics.14, 15 Among the P/Ni-ZSM-5 zeolites, 

ZSM-5 modified with 3 wt.% P and 2 wt.% Ni (3%P/2%Ni-ZSM-5) produced the 

highest aromatic yield, and was therefore selected for further characterization and CFP 

evaluations. 

Fig. S2. Effects of phosphorus and nickel loading over P/Ni-ZSM-5 on aromatic 

production in co-feed catalytic fast pyrolysis of pine wood and LDPE mixture (mass 

ratio of 2). 
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