Electronic Supplementary Information

§ Tao Liu, ^a Fangjun Huo,^{*b} Caixia Yin,^{*a} § JianFang Li, ^a Lixi Niu^c

^aInstitute of Molecular Science, Shanxi University, Taiyuan, 030006, China. ^b Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China. ^c Institute of Biotechnology, Shanxi University, Taiyuan 030006, PR China. *E-mail: yincx@sxu.edu.cn; huofj@sxu.edu.cn*

- Figure S1: The characterization data of the probe
- Figure S2: The UV-vis and fluorescence titration spectra of Cys and GSH
- Figure S3: The UV-vis and fluorescence titration spectra of ME and MPA
- **Figure S4**: The UV–vis and fluorescence titration spectra of probe when all kinds of analytes added
- Figure S5: The detection limits of Cys
- Figure S6: Kinetic study of the response of the probe to Hcy and Cys at 25°C
- Figure S7: Choice of pH range for the measurements
- Figure S8: ESI-MS spectra of the probe-ME adduct

Figure S1: 1D ¹H NMR, ¹³C NMR, ESI-MS, and crystal structure spectra of the probe.

The ¹³C NMR (75 MHz) spectra of the **probe** in DMSO

ESI-MS of the probe: HRMS (ESI-TOF) m/z: $[probe + H]^+$ Calcd for $C_{24}H_{28}N_2O_4$ 409.21, Found 409.25, the data was measured with GCT-MS (Waters) instrument.

Figure S2: The UV-vis and fluorescence titration spectra of Cys and GSH

Figure S2: Left: UV–vis spectra of the probe (35 μ M) with Cys (200 μ M)(**a**) and GSH (75 μ M) (**b**) in CH₃CN–HEPES buffer (10 mM, pH 9.0, 1 : 1, v/v). Right: Fluorescence spectra of probe (5 μ M) with Cys (200 μ M) (**c**) and GSH (40 μ M) (**d**) in CH₃CN–HEPES buffer (10 mM, pH 9.0, 1 : 1, v/v) (λ_{ex} = 575nm, slit: 5.0 nm/5.0 nm).

Figure S3: The UV-vis and fluorescence titration spectra of ME and MPA

Figure S3: Left: UV–vis spectra of the probe (35 μ M) with ME(2-Mercaptoethanol)(80 μ M) (a) and MPA (Mercaptopropionc Acid) (80 μ M) (b) in CH₃CN–HEPES buffer (10 mM, pH 9.0, 1 : 1, v/v). Right: Fluorescence spectra of probe (5 μ M) with ME (50 μ M) (c) and MPA (50 μ M) (d) in CH₃CN–HEPES buffer (10 mM, pH 9.0, 1 : 1, v/v) (λ_{ex} = 575 nm, slit: 5.0 nm/5.0 nm)

Figure S4: The UV–vis and fluorescence titration spectra of probe when all kinds of analytes added

Figure S4: The selectivity of probe 1 for (Ala, Arg, Asp, Gln, Glu, Gly, His, IIe, Leu, Lys, Met, Phe, Pro, Ser, Thr, Tyr, Trp and Val).

Figure S5: The detection limits of Cys

Figure S6: Kinetic study of the response of the probe to Hcy and Cys at 25 $\,^\circ\!\mathbb{C}$

Figure S6: Time-dependent absorbance of probe at 645 nm in the presence of 10 equiv. Hcy (a) and Cys (b).

Figure S7: Choice of pH range for the measurements

Figure S7: The fluorescence intensity of probe at 661 nm in the absence and presence of Hcy under different pH (5 μ mol/L probe in CH₃CN–HEPES buffer (10 mM, pH 9.0, 1 : 1, v/v)($\lambda_{ex} = 575$ nm; Slit: 5nm/5 nm).

Figure S8: ESI-MS spectra of the probe-ME adduct

ESI-MS of the probe: m/z: [probe +ME+K]⁺ Calcd for $C_{26}H_{34}KN_2O_5S$ 525.18, Found 525. The data was measured with LCMS-8030 (Shimadzu) instrument.