Electronic Supplementary Information

Li₄Ti₅O₁₂ hollow mesoporous microspheres assembled by nanoparticles for high rate lithium-ion battery anodes

Liyun Cao^a, Yani Hui^a, Haibo Ouyang^a, Jianfeng Huang *^a, Zhanwei Xu^a, Jiayin Li^a,

Wanzhuo Zhang ^a, Simin Chai ^a, Shouwu Guo ^a

a School of Materials Science & Engineering, Shaanxi University of Science and

Technology, Xi'an 710021, China

*Corresponding author. Tel.: +86 029 86168802; fax: +86 029 86168802.

E-mail: huangjfsust@126.com.

1. X-ray diffraction (XRD) analysis of the products after hydrothermal process

(PAHP) and $\rm Li_4Ti_5O_{12}$ calcinated at different temperatures.

Fig. S1 The XRD patterns of the PAHP and $Li_4Ti_5O_{12}$ calcinated at different temperatures.

2. Thermal analysis data.

Fig. S2 TG-DSC test of the PAHP.

Fig. S2 shows a weight loss of ~ 13% and the flat plateau around 400 °C implies the formation of $Li_4Ti_5O_{12}$.

3. The morphologies of the PAHP and $Li_4Ti_5O_{12}$ calcinated at different temperatures.

Fig. S3 The SEM images of the PAHP (a) and $Li_4Ti_5O_{12}$ calcinated at different temperatures 300 °C (b); 600 °C (c); 900 °C (d);

4. The HRTEM image of the Li₄Ti₅O₁₂ calcinated at 400 °C.

Fig. S4 HRTEM image of the $\rm Li_4Ti_5O_{12}$ calcinated at 400 $^\circ C$

5. The formation mechanism of the hollow structured $\rm Li_4Ti_5O_{12}$.

Scheme 1 The formation mechanism of the hollow structured $Li_4Ti_5O_{12}$.

On the basis of SEM, crystal structure and chemical composition analysis, the

dissolution-etch-crystallization mechanism was put forward to illustrate the formation of hollow structured $Li_4Ti_5O_{12}$ (presented in Scheme S1, Electronic Supplementary Information). During the hydrothermal treatment of TiO₂ powder in LiOH solution, OH⁻ and H₂O would enter into the TiO₂ particles and interact with the titanium ions and/or lattice oxygen to form titanium hydroxyl species (probably HTiO₃⁻) ⁴⁹. Then, Li⁺ was attracted by HTiO₃⁻ and reacted with it to form supersaturating Li-Ti-O particles, whose particle volume is smaller than HTiO₃⁻ particles. The volume shrinkage of the Li-Ti-O formation could cause the repack of many HTiO₃⁻ particles. Meanwhile, a large number OH⁻ could enter into the HTiO₃⁻ microspheres leading to the etch of HTiO₃⁻ microspheres. The presence of abundant OH⁻ would promote the etch and the fast formation of hollow structured Li-Ti-O microspheres. With further hydrothermal treatment for 48 h, the hollow structured LiTiO₂ microspheres were formed. Finally, the Li₄Ti₅O₁₂ hollow microspheres were obtained by a short thermal treatment of the LiTiO₂ microspheres.

6. Coulombic efficiency of the $Li_4Ti_5O_{12}$ hollow mesoporous microsphere electrodes.

Fig. S5 Coulombic efficiency for the 500 cycles at the rates of 10 C, 20 C and 40 C.

7. The rate properties of three samples annealed at 300 (LTO - 300), 400 (LTO -

400) and 600 °C (LTO - 600).

Fig. S6 The rate properties of LTO - 300, LTO - 400 and LTO - 600.

The much lower discharge capacity of LTO - 300 and LTO - 600 compared to LTO - 400 may be because of the difference in active material contents. Spinel $Li_4Ti_5O_{12}$ was the major phase of the LTO - 600. However, the major constituent of the LTO - 300 was LiTiO₂, which possesses very poor electrochemical performance.