N/N	Conjugate* 5'→ 3'	Mr (calculated)	Mr (experimental)
1	Hemin-T ₁₅ -EAD2	11075.9	11067.4
2	Hemin-T ₁₀ -EAD2	9554.9	9548.1
3	Hemin-T ₅ -EAD2	8033.9	8027.8
4	Hemin-EAD2	6512.9	6507.5
5	EAD2-T ₁₅ -Hemin	11105.8	11097.3
6	EAD2-T ₁₀ -Hemin	9584.9	9578.1
7	EAD2-T ₅ -Hemin	8063.9	8057.8
8	EAD2-Hemin	6542.9	6537.5
9	Hemin-Prd ₁₀ -EAD2	7893.5	7887.6
10	EAD2-Prd ₁₀ -Hemin	7893.5	7887.7

Table 1S. Characterization of covalent hemin-EAD2 conjugates by mass-spectrometry.

*Symbol d in the notation of oligothymidilate spacers is omitted.

Figure S1. Purification of PMDNAzyme(T_{10}) by gel electrophoresis in 20% PAAG, 7 M urea with UV visualization. Lanes: *1* - xylene cyanol marker; *2* – random 40-mer DNA as a length control; *3* - initial NH₂-T10-EAD2; *4*,*5* - products of hemin conjugation to NH₂-T₁₀-EAD2. Only conjugate hemin-T₁₀-EAD2 was isolated from the gel.

Figure 2S. Analysis of the electrophoretic mobility of EAD2-T₁₀-Hemin and EAD2-T10-NH₂ in the presence of 200 mM CH₃COONa (**A**) or 200 mM CH₃COONa and 20 mM CH₃COOK (**B**). Lanes: *1* - control random DNA 25-mer, *2* - 28-mer, *3* - 35-mer, *4* - EAD2-dT₁₀-NH₂, *5* - EAD2-dT₁₀-Hemin. All oligonucleotides were 5'-end ³²P-labelled. A blurred band in the lane 5 (A) may result from a partial destruction of the quadruplex structure under nonequilibrium electrophoresis conditions. Electrophoresis was performed in 20% acrylamide native gels at 4°C in 100 mM TBE (Tris/boric acid/EDTA) buffer, pH 8.0.

Optimization of experimental conditions for chemiluminescent determination of PMDNAzyme(T₁₀) measured towards luminol.

Figure S3. pH-Dependence of activity of PMDNAzyme(T_{10}) measured towards luminol. Experimental conditions: 25 mM Tris buffer with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [H₂O₂] = 1.3 mM; [luminol] = 5 μ M; [PMDNAzyme(T_{10})] = 6 x 10⁻⁸ M.

Figure S4. Effect of luminol concentration on chemiluminescence intensity produced upon PMDNAzyme(T_{10}) -catalyzed oxidation of luminol. Experimental conditions: 25 mM Tris buffer, pH 8.6 with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [H₂O₂] = 1.3 mM; [PMDNAzyme(T_{10})] = 6 x 10⁻⁸ M.

Figure S5. Effect of hydrogen peroxide concentration on chemiluminescence intensity produced upon PMDNAzyme(T_{10})-catalyzed oxidation of luminol. Experimental conditions: 25 mM Tris buffer, pH 8.6 with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [luminol] = 5 μ M; [PMDNAzyme(T_{10})] = 4 x 10⁻⁸ M.

Optimization of experimental conditions for colorimetric determination of PMDNAzyme(T₁₀) measured towards ABTS.

Figure S6. Dependence of initial rate of PMDNAzyme(T_{10})-catalyzed oxidation of ABTS as a function of pH. Experimental conditions: 25 mM citrate-phosphate buffer with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [H_2O_2] = 3 mM; [ABTS] = 3mM; [PMDNAzyme(T_{10})] = 3 x 10⁻⁸ M.

Figure S7. Dependence of initial rate of PMDNAzyme(T_{10})-catalyzed oxidation of ABTS on concentration of hydrogen peroxide. Experimental conditions: 25 mM citrate-phosphate buffer, pH 6.0 with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [ABTS] = 3mM; [PMDNAzyme(T_{10})] = 1 x 10⁻⁷ M.

Figure S8. Kinetics of PMDNAzyme(T_{10})-catalyzed oxidation of ABTS in the presence of different ABTS concentration. Experimental conditions: 25 mM citrate-phosphate buffer, pH 6.0 with 20 mM KCl, 200 mM NaCl, and 0.1% Triton X100; [H_2O_2] = 12 mM; [PMDNAzyme(T_{10})] = 1x10⁻⁷ M.