Supplementary data

Phosphate removal by a nano-biosorbent from the synthetic and real (*Persian Gulf*) water

M. Arshadi*1, J. Etemad Gholtash2, H. Zandi3, S. Foroughifard4

¹Department of Chemistry, Shiraz Branch, Islamic Azad University, P.O. Box 71955-149 Shiraz, Fars, Iran

²Department of Chemistry, Firozabad Branch, Islamic Azad University, Firozabad, Fars, Iran

³Department of Chemistry, Yadegar-e-Imam Khomeini (RAH), Shahre-rey Branch, Islamic Azad University, Tehran, Iran

⁴Department of Fishery, University of Guilan, P.O. Box 1144, sowmesara, Iran

^{*} To whom correspondence should be addressed. Tel.: +989361528179.

[.] E-mail Address: m-arshadi@ch.iut.ac.ir, mohammadarshadi@yahoo.com(M. Arshadi)

Figure S1. P speciation as function of pH.

Table S1. Adsorption isotherm and kinetics equations.

Tuble 51: Ausorption isotherm and knieues equations.	
Name	Equation*
Langmuir	$q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$
Freundlich	$q_e = K_F C_e^{1/n}$
Pseudo-first-order	$q_t = q_e[1 - exp(-k_1 t)]$
Pseudo-second-order	$q_t = k_2 q_e^2 t / I + k_2 q_e t$
Intra-particle diffusion	$q_t = k_{int}t^{1/2}$
Initial adsorption rate	$h = k_2 q_e^2$

^{*} q_e (mg g⁻¹) is the specific equilibrium amount of adsorbate, C_e (mg L⁻¹) is the equilibrium concentration of adsorbate, q_m is the maximal adsorption capacity and K (K_L and K_{LF}) (L mol⁻¹) and n are empirical constants that indicate the extent of adsorption and the adsorption effectiveness, respectively.

Figure S2. The plot of linear form of the pseudo-second-order for the adsorption of P ions by B- HNO_3 -NZVI.

Figure S3. Intraparticle diffusion for P adsorption on B-HNO₃-NZVI.

Figure S4. The effect of initial concentrations for the adsorption of P ions on the biomaterials at 25° C.