Supporting Information

A Further Electrochemical Investigation on Solution to High Energetical Power Source: Isomerous Compound 0.75Li_{1.2}Ni_{0.2}Mn_{0.6}O₂·0.25LiNi_{0.5}Mn_{1.5}O₄

Zhuo Zheng,^a Zhen-Guo Wu,^a Yan-Jun Zhong,^a Chong-Heng Shen,^b Wei-Bo Hua,^a Bin-Bin Xu,^b
Chong Yu,^c Ben-He Zhong^a and Xiao-Dong Guo*^a
^a College of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road,
Chengdu, 610065, China.
^b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University,
Fujian 361005, China.
^c National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China,
Chengdu, 610041, China.
*Corresponding author. Email: xiaodong2009@scu.edu.cn

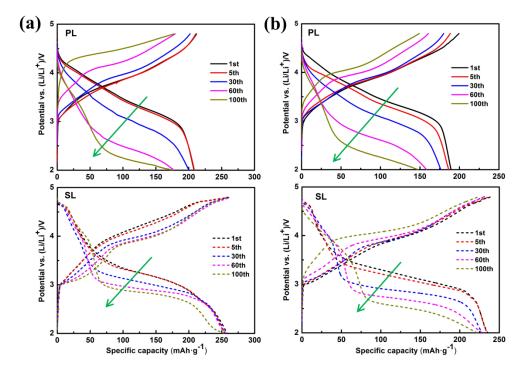


Fig. S1 Charge and discharge profiles of PL and SL samples upon the cycling (a) at

0.5 C rate, (b) at 1 C rate

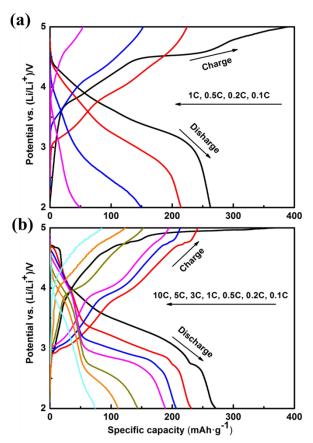


Fig. S2 Charge and discharge curves of (a) PL and (b) SL samples at various rates between 2.0 and 5.0 V

Samples .	Charge capacity (mAh g ⁻¹)		Discharge capacity (mAh g ⁻¹)	
	<4.4 V	>4.4 V	< 3.5 V	> 3.5 V
PL	124	219	125	137
SL	107	240	162	131

 Table S1
 Capacity contribution of first cycle in different voltage range of PL and SL samples