Electronic Supplementary Information for

# Removal of methyl violet dye by adsorption onto *N*-benzyltriazole derivatized dextran

Eunae Cho<sup>a</sup>, Muhammad Nazi Tahir<sup>b</sup>, Hwanhee Kim<sup>c</sup>, Jae-Hyuk Yu<sup>d</sup>, Seunho Jung<sup>c,\*</sup>

<sup>a</sup> Institute for ubiquitous information technology and applications (UBITA), Konkuk University, Seoul 143-701, South Korea

<sup>b</sup>The Danish Polymer Centre, Department of Chemical and Biochemical Engineering Danmarks Tekniske Universitet (DTU), 2880 Kgs. Lyngby, Denmark

<sup>c</sup>Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Institute of Ubiquitous Information Technology and Applications (CBRU), Konkuk University, 1 Hwayangdong, Gwangjin-gu, Seoul 143-701, South Korea

<sup>d</sup>Departments of Bacteriology and Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA

## \* Corresponding author

## Seunho Jung, Ph. D.

Mailing address: Professor, Department of Bioscience and Biotechnology, Bio/Molecular Informtics Center & Center for Biotechnology Research in UBITA, Konkuk University, 1 Hwayang-dong Gwangjin-gu, Seoul 143-701. South Korea

Tel: 82-2-450-3520; fax: 82-2-452-3611; e-mail: shjung@konkuk.ac.kr

#### **S1. Standard Methods**

#### S1.1. Equilibrium studies

The prepared polysaccharide adsorbent was added to the dye solution and stirred at the fixed temperature in a sealed container <sup>1</sup>. After the equilibrium was reached, the solution was separated by centrifugation at 13,000 rpm for 5 min. The absorbance of the supernatant was measured spectrophotometrically, and the residual dye concentration was measured both at time t = 0 and after equilibrium, at a wavelength of 583 nm. The amount of adsorption of the dye onto the adsorbent at equilibrium,  $q_e$  (mg/g), was calculated by:

$$q_{\rm e} = \left[ (C_0 - C_{\rm e}) \times V \right] / m \tag{1}$$

where  $C_0$  and  $C_e$  (mg/L) are the liquid phase concentrations of the dye initially and at equilibrium, respectively, V is the volume of the solution (L), and m is the mass of the adsorbent used (g).

The dye removal percentage was calculated as follows:

% Removal = 
$$[(C_0 - C_e)/C_0] \times 100$$
 (2)

#### S1.2. Adsorption isotherm

The equilibrium sorption of the absorbate by the adsorbent was correlated with the Langmuir <sup>2</sup>, Freundlich , and Temkin isotherm models; they are represented by the following equations, (3), (4), and (5), respectively:

$$1/q_{\rm e} = 1/q_{\rm m} + 1/(q_{\rm m} K_{\rm L} C_{\rm e}) \tag{3}$$

$$\ln q_{\rm e} = \ln K_{\rm F} + (1/n) (\ln C_{\rm e}) \tag{4}$$

$$q_e = B \ln A_{\rm T} + B \ln C_{\rm e} \tag{5}$$

where  $q_m$  is the maximum adsorption capacity of the adsorbent (mg/g),  $K_L$  is the Langmuir isotherm constant (L/mg),  $K_F$  is the Freundlich isotherm constant (mg/g), *n* represents the intensity of adsorption, *B* is a constant related to the heat of sorption (J/mol), and  $A_T$  is the Temkin isotherm equilibrium binding constant (L/g).

The essential characteristics of the Langmuir isotherm may be expressed in terms of an equilibrium parameter,  $R_L$ , which is a dimensionless constant, also referred to as the separation factor:

$$R_{\rm L} = 1 / (1 + K_{\rm L} C_0) \tag{6}$$

where  $R_L$  values indicate whether the isotherm will be irreversible ( $R_L = 0$ ), favorable ( $0 < R_L < 1$ ), linear ( $R_L = 1$ ), or unfavorable ( $R_L > 1$ ).

## S1.3. Adsorption kinetics

The pseudo-second order kinetic model was used to analyze the experimental data . The rate of a pseudo-second order reaction is dependent on the amount of sorbate adsorbed on the surface of the adsorbent and the amount adsorbed at equilibrium. The pseudo-second order model can be represented by the following equation:

$$t/q_{\rm t} = q/k_2 \, q_{\rm e}^2 + t/q_{\rm e} \tag{7}$$

where  $k_2$  (g/mg min) is the second-order rate constant of adsorption.

Table S1. Elemental analysis and atomic ratios of carbohydrates.

|                                            | C[%]  | H[%] | N[%] | <b>O[%]</b> | (N+O)/C | H/C  |
|--------------------------------------------|-------|------|------|-------------|---------|------|
| Dextran                                    | 39.47 | 6.78 | 0    | 50.75       | 0.96    | 2.06 |
| N-benzyltriazole derivatized dextran       | 54.80 | 6.67 | 8.56 | 26.70       | 0.50    | 1.46 |
| Succinoglycan                              | 38.56 | 6.35 | 0    | 47.55       | 0.92    | 1.98 |
| N-benzyltriazole derivatized succinoglycan | 56.53 | 6.44 | 9.71 | 26.22       | 0.50    | 1.37 |

**Table S2**. Comparison of maximum adsorption capacities of *N*-benzyltriazole derivatized dextran with other adsorbents for methyl violet in aqueous solutions.

| Adsorbent                              | q <sub>max</sub> (mg/g) | Reference                            |  |
|----------------------------------------|-------------------------|--------------------------------------|--|
| Sugarcane dust                         | 50.4                    | (Ho et al., 2005) <sup>7</sup>       |  |
| Bagasse fly ash                        | 26.2                    | (Mall et al., 2006) <sup>8</sup>     |  |
| Cross linked amphoteric starch         | 333.3                   | (Xu et al., 2006) <sup>9</sup>       |  |
| Sunflower seed hull                    | 92.6                    | (Hameed et al., 2008) <sup>10</sup>  |  |
| Granular activated carbon              | 95                      | (Azizian et al., 2009) <sup>11</sup> |  |
| Magnetic baker's yeast biomass         | 60.8                    | (Tian et al., 2010) <sup>12</sup>    |  |
| Almond shell                           | 76.3                    | (Duran et al., 2011) <sup>13</sup>   |  |
| Halloysite nanotubes                   | 113.6                   | (Liu et al., 2011) <sup>14</sup>     |  |
| Peanut straw char                      | 101                     | (Xu et al., 2011) <sup>15</sup>      |  |
| Exfoliated graphene oxide              | 2.47                    | (Ramesha et al., 2011) <sup>16</sup> |  |
| h-XG/SiO <sub>2</sub> -2 nanocomposite | 378.8                   | (Ghorai, et al., 2014) <sup>17</sup> |  |
| N-benzyltriazole derivatized dextran   | 95.24                   | Present study                        |  |

| Wavenumber (cm <sup>-1</sup> ) |                  | Differences | Assignment                   |
|--------------------------------|------------------|-------------|------------------------------|
| Before adsorption              | After adsorption |             |                              |
| 3418                           | 3420             | +2          | O-H stretch                  |
| 3141                           | 3139             | -2          | =C-H aromatic stretch        |
| 2927                           | 2928             | +1          | C-H stretch                  |
| 2097                           | -                |             | C=C stretch                  |
| 1643                           | 1637             | -6          | C=C alkene, aromatic stretch |
| -                              | 1587             |             | C=C aromatic stretch         |
| 1435                           | 1436             | +1          | CH <sub>2</sub> bend         |
| 1354                           | 1361             | +7          | CH <sub>3</sub> bend         |
| 1282                           | 1285             | +3          | C-N stretch                  |
| 1155                           | 1153             | -2          | C-N stretch                  |
| 1017                           | 1020             | +3          | C-O stretch                  |
| 698                            | 699              | +1          | Monosubstituted oop          |

**Table S3.** FT-IR absorption bands of N-benzyltriazole derivatized dextran before and after adsorption.

Fig. S1. FT-IR spectrum of methyl violet 2B.



Fig. S2. SEM image (A) and particle size distribution (B) of original dextran.



**Fig. S3.** Langmuir (A), Freundlich (B), and Tempkin adsorption isotherms (C) for methyl violet 2B on *N*-benzyltriazole derivatized dextran.



![](_page_7_Figure_0.jpeg)

Fig. S4. Separation factor for methyl violet 2B onto *N*-benzyltriazole derivatized dextran.

Fig. S5. Effect of temperature on adsorption capacity of *N*-benzyltriazole derivatized dextran.

![](_page_7_Figure_3.jpeg)

**Fig. S6.** Arrhenius plot (A) for determination of activation energy  $(E_a)$  of adsorption and plot of  $\ln(k_2/t)$  against 1/T (B) for the determination of free energy of activation  $\Delta G^{\#}$ .

![](_page_8_Figure_1.jpeg)

(A)

**Fig. S7.** Determination of the thermodynamic parameters for the adsorption of methyl violet 2B onto *N*-benzyltriazole derivatized dextran.

![](_page_9_Figure_1.jpeg)

### References

- 1. R. S. Blackburn, Environmental science & technology, 2004, 38, 4905-4909.
- 2. I. Langmuir, Journal of the American Chemical Society, 1918, 40, 1361-1403.
- 3. H. Freundlich, J. Phys. Chem, 1906, 57, 1100-1107.
- 4. M. Temkin and V. Pyzhev, Acta Physiochim. USSR, 1940, 12, 217-222.
- 5. T. W. Weber and R. K. Chakravorti, *AIChE Journal*, 1974, **20**, 228-238.
- 6. Y.-S. Ho and G. McKay, *Process Biochemistry*, 1999, **34**, 451-465.
- 7. Y.-S. Ho, W.-T. Chiu and C.-C. Wang, *Bioresource technology*, 2005, 96, 1285-1291
- 8. I. D. Mall, V. C. Srivastava and N. K. Agarwal, Dyes and pigments, 2006, 69, 210-223.
- 9. S. Xu, J. Wang, R. Wu, J. Wang and H. Li, *Chemical Engineering Journal*, 2006, 117, 161-167.
- 10. B. Hameed, Journal of hazardous materials, 2008, 154, 204-212.
- 11. S. Azizian, M. Haerifar and H. Bashiri, *Chemical Engineering Journal*, 2009, 146, 36-41.
- Y. Tian, C. Ji, M. Zhao, M. Xu, Y. Zhang and R. Wang, *Chemical Engineering Journal*, 2010, 165, 474-481.
- C. Duran, D. Ozdes, A. Gundogdu and H. B. Senturk, *Journal of Chemical & Engineering Data*, 2011, 56, 2136-2147.
- 14. R. Liu, B. Zhang, D. Mei, H. Zhang and J. Liu, Desalination, 2011, 268, 111-116.
- 15. R.-k. Xu, S.-c. Xiao, J.-h. Yuan and A.-z. Zhao, *Bioresource technology*, 2011, **102**, 10293-10298.
- G. Ramesha, A. V. Kumara, H. Muralidhara and S. Sampath, *Journal of colloid and interface science*, 2011, 361, 270-277.
- 17. S. Ghorai, A. Sarkar, M. Raoufi, A. B. Panda, H. Schönherr and S. Pal, *ACS applied materials & interfaces*, 2014, **6**, 4766-4777.