# **Supporting Information**

# A new ICT and CHEF based visible light excitable fluorescent probe easily detects "in vivo" Zn<sup>2+</sup>

Krishnendu Aich, <sup>[a]</sup> Shyamaprosad Goswami,\*<sup>[a]</sup> Sangita Das <sup>[a]</sup> and Chitrangada Das Mukhopadhyay<sup>[b]</sup>

<sup>a</sup> Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India. Fax: +91 33 2668 2916; Tel: +91 33 2668 2961-3; E-mail: <u>spgoswamical@yahoo.com</u> <sup>b</sup> Department of of Centre for Healthcare Science & Technology, Indian Institute of Engineering

<sup>b</sup> Department of of Centre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711 103, India.

# **CONTENTS**

| 1.  | Determination of detection limit              |
|-----|-----------------------------------------------|
| 2.  | Determination of association constant         |
| 3.  | Job plot                                      |
| 4.  | Competition Study                             |
| 5.  | Determination of Quantum yield                |
| 6.  | pH study                                      |
| 7.  | <sup>1</sup> H NMR spectrum of BQ             |
| 8.  | <sup>13</sup> C NMR spectrum of BQ            |
| 9.  | Mass spectrum (HRMS) of BQ                    |
| 10. | MS spectrum of Zn <sup>2+</sup> complex of BQ |

#### 1. Determination of detection limit:

The detection limit was calculated based on the absorption and fluorescence titration. To determine the S/N ratio, the emission intensity of BQ without  $Zn^{2+}$  was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

 $DL = K * Sb_1/S$ 

Where K = 2 or 3 (we take 3 in this case); Sb<sub>1</sub> is the standard deviation of the blank solution; S is the slope of the calibration curve. For  $Zn^{2+}$ :

From the graph we get slope =  $1.138 \times 10^{11}$ , and Sb<sub>1</sub> value is 892.32. Thus using the formula we get the Detection Limit =  $2.35 \times 10^{-8}$  M i.e. BQ can detect Zn<sup>2+</sup> in this minimum concentration by fluorescence techniques.



Figure S1: Emission of BQ at 475 nm depending on the concentration of Zn<sup>2+</sup>

From the graph we get slope = 28469.227, and Sb<sub>1</sub> value is 0.00504, Thus using the formula we get the Detection Limit =  $5.31 \times 10^{-7}$  M i.e. BQ can detect Zn<sup>2+</sup> in this minimum concentration by UV/vis techniques.



Figure S2: Absorbance ratio of BQ at  $(A_{405}/A_{282})$  depending on the concentration of  $Zn^{2+}$ 



Figure S3: Absorbance BQ at  $(A_{405})$  depending on the concentration of  $Zn^{2+}$ 

#### 2. Determination of Association Constant (*K<sub>a</sub>*):

#### By UV-vis method:

Association constant was calculated according to the Benesi-Hildebrand equation.  $K_a$  was calculated following the equation stated below.

$$1/(A-A_o) = 1/{K(A_{max}-A_o)[M^{x+}]^n} + 1/[A_{max}-A_o]$$

Here  $A_o$  is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of added guest,  $A_{max}$  is absorbance in presence of added  $[M^{x+}]_{max}$  and  $K_a$  is the association constant, where  $[M^{X+}]$  is  $[Zn^{2+}]$ . The association constant ( $K_a$ ) could be determined from the slope of the straight line of the plot of  $1/(A-A_o)$  against  $1/[Zn^{2+}]$  and is found to be  $5.77 \times 10^5 \text{ M}^{-1}$ .



Figure S4: Benesi–Hildebrand plot from UV/vis titration data of receptor (10  $\mu$ M) with Zn<sup>2+</sup> concentration

#### By fluorescence method:

The binding constant value of  $Zn^{2+}$  with receptor has been determined from the emission intensity data following the modified Benesi–Hildebrand equation,  $1/\Delta I = 1/\Delta I_{max}$ + $(1/K_a[C])(1/\Delta I_{max})$ . Here  $\Delta I = I-I_{min}$  and  $\Delta I_{max} = I_{max}-I_{min}$ , where  $I_{min}$ , I, and  $I_{max}$  are the emission intensities of receptor considered in the absence of  $Zn^{2+}$ , at an intermediate  $Zn^{2+}$  concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the Zn<sup>2+</sup>concentration respectively. From the plot of  $[1 / (I - I_{min})]$  against [C]<sup>-1</sup> for receptor, the value of K has been determined from the slope. The association constant ( $K_a$ ) as determined by fluorescence titration method for the receptor with Zn<sup>2+</sup> is found to be 2.48 × 10<sup>5</sup> M<sup>-1</sup>.



Figure S5: Benesi–Hildebrand plot from fluorescence titration data of receptor (10 µM) with Zn<sup>2+</sup>.

#### 3. General procedure for drawing Job's plot by fluorescence method:

Stock solution of same concentration of sensor and  $Zn^{2+}$  was prepared in the order of 10  $\mu$ M in [CH<sub>3</sub>OH/ H<sub>2</sub>O, 1/9, v/v] (at 25 °C) at pH 7.4 in HEPES buffer. The absorbance spectrum in each case with different *host–guest* ratio but equal in volume was recorded. Job's plots were drawn by plotting  $\Delta I.X_{host}$  vs  $X_{host}$  ( $\Delta I$  = change of absorbance of the absorption spectrum at 405 nm during titration and  $X_{host}$  is the mole fraction of the host in each case, respectively).



**Figure S6**: Job's plot diagram of receptor for  $Zn^{2+}$  (where  $X_h$  is the mole fraction of the host and  $\Delta I$  indicates the change of absorbance at 405 nm).



#### 4. Competition study

**Figure S7:** Competition study using Fluorescence method, after addition of different analytes (30  $\mu$ M) in the solution of BQ (10  $\mu$ M) in presence of Zn<sup>2+</sup> (20  $\mu$ M).

# 5. Determination of fluorescence Quantum Yields ( $\Phi$ ) of BQ and its complex with $Zn^{2+}$ ion:

For measurement of the quantum yields of BQ and its complex with  $Zn^{2+}$ , we recorded the absorbance of the compounds in methanol solution. The emission spectra were recorded using the maximal excitation wavelengths, and the integrated areas of the fluorescence-corrected spectra were measured. The quantum yields were then calculated by comparison with fluorescein ( $\Phi$ s = 0.97 in basic ethanol) as reference using the following equation:

$$\Phi_{\rm X} = \Phi_{\rm S} \times \left(\frac{Ix}{Is}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^2$$

Where, x & s indicate the unknown and standard solution respectively,  $\Phi$  is the quantum yield, *I* is the integrated area under the fluorescence spectra, *A* is the absorbance and *n* is the refractive index of the solvent.

We calculated the quantum yield of BQ and BQ- $Zn^{2+}$  using the above equation and the value is 0.02 and 0.22 respectively.





**Figure S8**: Fluorescence response of (a) BQ and (b) BQ- $Zn^{2+}$  at 475 nm (10  $\mu$ M) as a function of pH in CH<sub>3</sub>OH/H<sub>2</sub>O (1/9,  $\nu/\nu$ ), pH is adjusted by using aqueous solutions of 1 M HCl or 1 M NaOH

#### Comparison of present probe with the existing probes:

Table S1: The comparison of the present probe with recently reported probes for  $Zn^{2+}$  have been outlined in this table.

| Fluorophore used   | Type of       | Detection               | Living  | Reference               |
|--------------------|---------------|-------------------------|---------|-------------------------|
|                    | response      | limit                   | cell    |                         |
|                    |               |                         | imaging |                         |
| Quinoline-pyridine | Colorimetric, | 6.6 × 10 <sup>-8</sup>  | No      | Dalton Trans.,          |
|                    | fluorometric  | М                       |         | 2013, 42, 15514         |
| Quinoline-pyridine | Colorimetric, | 4.9× 10 <sup>-8</sup>   | Yes     | Dalton Trans.,          |
|                    | fluorometric  | М                       |         | 2014, 43, 706–          |
|                    |               |                         |         | 713                     |
| Pentaquinone       | Colorimetric, | 3.5× 10 <sup>-9</sup>   | No      | Dalton Trans.,          |
|                    | Fluorometric  | <b>Ml</b> <sup>-1</sup> |         | 2013, 42, 975           |
| Pyridine-hydrazone | Colorimetric, | 69 ppb                  | Yes     | Org. Biomol.            |
|                    | fluorometric  |                         |         | <i>Chem.</i> , 2014,    |
|                    |               |                         |         | 12, 4975.               |
| benzothiazole      | Colorimetric, | 67 µM                   | Yes     | Dalton Trans.,          |
|                    | fluorometric  |                         |         | 2015, 44, 2097–<br>2102 |
| benzoxazole        | Colorimetric, | 1.63× 10 <sup>-8</sup>  | Yes     | Chem.Commun.,           |
|                    | fluorometric  | М                       |         | 2014, 50, 7514.         |
| 8-aminoquinoline   | Colorimetric, | 10-7 M                  | No      | New J. Chem.,           |
|                    | fluorometric  |                         |         | 2014, 38, 1802.         |
| benzaldehyde       | Colorimetric, | 76 µM                   | Yes     | Dalton Trans.,          |
|                    | fluorometric  |                         |         | 2013, 42,               |
|                    |               |                         |         | 16569.                  |
| Quinoline          | Colorimetric, | 2.35 × 10-              | Yes     | Present work            |
|                    | fluorometric  | <sup>8</sup> M          |         |                         |

## 7. <sup>1</sup>H NMR spectrum of BQ



Figure S9: <sup>1</sup>H NMR (400 MHz) spectrum of BQ in DMSO-d<sub>6</sub>.

## 8. <sup>13</sup>C NMR of BQ



Figure S10: <sup>13</sup>C NMR (125 Hz) spectrum of BQ in DMSO-d<sub>6</sub>.

### 9. HRMS of BQ



Figure S11: HRMS of BQ.



Figure S11a: HRMS (expansion) of BQ.

#### 10. HRMS of BQ-Zn<sup>2+</sup> complex:



Figure 12: HRMS of BQ-Zn<sup>2+</sup> complex