Supplementary Information-

¹H NMR spectra of the PVC resins:

All proton nuclear magnetic resonance (1 H NMR) spectra were recorded on a JEOL AL300 FTNMR (300 MHz) at room temperature in deuterated DMSO and CDCl₃ as the solvents and references.

Figure-1: ¹H-NMR spectra of PVC and functionalized PVC with thiosulphate (PVC-TS), thiourea (PVC-TU) and sulphite (PVC-S).

- (1) **PVC-** ¹H NMR (in DMSO): δ = 1.30 (s, 3H), δ = 3.34 (d, 2H), δ = 4.46 (s, H) [indicative of pure PVC]
- (2) **PVC-TS-** ¹H NMR (in CDCl₃) : δ = 1.01 (t, 3H), δ = 1.65, 1.47 (d, H₂O present in CDCl₃), δ = 2.32 (symmetric), 2.09(anti- symmetric) (d, 2H, CH₂CCl), δ = 3.75, 3.28 (s, 1H, HCS), δ = 4.29, 4.59 (due to presence of hydrogen bonding), δ = 4.46 (s, H-C-Cl), δ = 7.25 (solvent) [indicative of PVC modified with S₂O₃²⁻]
- (3) **PVC-TU-** ¹H NMR (in DMSO) : δ = 0.96 (t, 3H, CH3), δ = 1.35, 1.58 (m, CH₂), δ = 3.21 (m, 2H, HC-SNH₂) δ = 4.46 (s, H-C-Cl), δ = 8.22 (s, NH₂) [indicative of PVC modified with CSNH₂]

(4) **PVC-S-** ¹H NMR (in CDCl₃) : δ = 1.01 (t, 3H), δ = 1.25 (m, CH₂CH₃), δ = 1.58 (s, H₂O present in CDCl₃), δ = 2.32 (symmetric), 2.09(anti- symmetric) (d, 2H, CH₂CCl), δ = 3.97 (s, 1H, HCS), δ = 4.30, 4.58 (due to presence of hydrogen bonding), δ = 4.459 (s, H-C-Cl), δ = 7.25 (solvent) [indicative of PVC modified with SO₃²⁻]

The signal of the CH-Cl protons at 4.46 ppm decreases with conversion, while new one at 3.75, 3.28 and 3.97 ppm is formed due to CH-S protons in PVC-TS and PVC-S respectively.