Supporting Information

Cs Promoted Fe₅C₂/Charcoal Nanocatalysts for Sustainable Liquid Fuel Production

Ji Chan Park,* Dong Hyun Chun, Jung-Il Yang, Ho-Tae Lee, Sungjun Hong, Geun Bae Rhim, Sanha Jang and Heon Jung*

Fig. S1 TEM images and particle size distribution histograms of Cs promoted Fe_5C_2 /charcoal. (a,b) Cs/Fe = 0.025, (c,d) Cs/Fe = 0.050. More than 200 particles were counted for each sample. The bars (a,c) represent 20 nm.

Fig. S2 CO₂-TPD profiles of Cs promoted catalysts and amount of CO₂ desorption measured by area under the peak.

Fig. S3 Catalytic performance of Cs promoted Fe₅C₂/charcoal catalysts for high-temperature FT synthesis.

Fig. S4 Hydrocarbon product distributions. The hydrocarbon distributions (wt%) for each sample were calculated from GC analysis of gas products (C_1 - C_4) and SIMDIS analysis of isolated liquid and solid products.

Fig. S5 (a) TEM and HRTEM images (inset) of the recovered Cs promoted Fe_5C_2 /charcoal catalyst (Cs/Fe=0.025) after the FT reaction, (b) TEM image and (c) XRD spectrum of the recovered Cs promoted Fe_5C_2 /charcoal catalyst (Cs/Fe=0.050) after the FT reaction. The bars represent (a,b) 20 nm and (inset) 5 nm.

Catalyst	Total CO conv. (%)	$FTY (mol_{CO} \bullet g_{Fe}^{-1} \bullet s^{-1})$	Ref.		
$Cs/Fe_5C_2/charcoal$	97	1.40×10^{-4}	This		
(Cs/Fe=0.025, Fe 20wt%)			work ^a		
Cs/Fe ₅ C ₂ /charcoal	96	1.45×10^{-4}	This		
(Cs/Fe=0.050, Fe 20wt%)	90	1.43 ~ 10	work ^a		
Cs/Fe ₅ C ₂ /charcoal	62	0.0×10^{-5}	This		
(Cs/Fe=0.100, Fe 20wt%)	03	9.0×10*	work ^a		
Fe/CNF (Fe 12wt%)	88	2.98×10 ⁻⁵			
Fe-Cu-K-SiO ₂ (Fe 32wt%)	79	1.12×10 ⁻⁵	1) ^b		
Fe/α -Al ₂ O ₃ (6wt% Fe)	77	8.48×10 ⁻⁵			
Fe-Ru-K/CNT (9.8wt% Fe)	25	1.1×10^{-4}	2)°		
Catalytic tests were carried out at ${}^{a}T = 320^{\circ}C$, P = 15 bar, H ₂ /CO ratio=1, ${}^{b}T = 340^{\circ}C$,					
$P = 20$ bar, H_2/CO ratio = 1, and $CT = 275^{\circ}C$, $P = 8$ bar, H_2/CO ratio = 2, respectively.					

Table S1 A comparison of the CO conversion and FT activity of Cs promoted Fe_5C_2 catalysts with some literature Fe supported catalysts in high temperature FT reactions.

Table S2 Liquid and solid hydrocarbon productivity of Cs promoted Fe₅C₂ on charcoal catalysts.

Catalyst	Cs/Fe=0.025	Cs/Fe=0.050
liquid oil productivity $(g_{liq} \bullet g_{cat}^{-1} \bullet h^{-1})$	0.401	0.296
solid wax productivity $(g_{sol} \bullet g_{cat} ^{-1} \bullet h^{-1})$	0.026	0.164

The g_{cat} is the weight sum of Fe and the charcoal support. The values of g_{lid} and g_{sol} indicate the weights of the isolated liquid oil and solid wax after reaction, respectively.

Table S3 Gas product yields of Cs promoted Fe_5C_2 on charcoal catalysts after 90 h on stream.

Catalyst _		1)		
	CH ₄	C ₂ -C ₄ olefins	C ₂ -C ₄ paraffins	Total
Cs/Fe = 0.025	2.95	1.94	3.67	8.56
Cs/Fe = 0.050	2.42	3.62	1.99	8.03

References)

1) H. M. T. Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan and K. P. de Jong,

Science, 2012, 335, 835.

2) M. C. Bahome, L. L. Jewell, K. Padayachy, D. Hildebrandt, D. Glasser, A. K. Datye and N. J. Coville, *Appl. Catal. A: Gen.*, 2007, **328**, 243.