Supporting Information

Cascade and lodo-Selective Base-Promoted Homolytic Aromatic Substitution

Kye-Simeon Masters*

*Discipline of Nanotechnology and Molecular Science
School of Chemistry, Physics and Mechanical Engineering
Faculty of Science and Engineering
Queensland University of Technology (QUT)
GPO Box 2434, Brisbane, Queensland, 4001, Australia
kye.masters@qut.edu.au

Contents

Figure1 3
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 2 4
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 4 6
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 6 8
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 7 10
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 8 12
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 10 14
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 11 16
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound $\mathbf{1 2}$ 18
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 13 20
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 14 22
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 15 24
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 16 26
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 17a 28
${ }^{1} \mathrm{H}-$ NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 17b 30
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 18 32
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 20 34
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 21 36
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 22 38
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 23a 40
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 23b 42
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 24a 44
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 24b 46
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 43 48
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 44 50
${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR Data for Compound 45 52
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 46a 54
${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR Data for Compound 46b 56

Figure 1: BHAS Reactions with arenes (solids at room temperature)
(Delayed Reaction Initiation by Arene-Melt)

- KOtBu
- 1,4-Dimethoxy Benzene
- Bis(haloaryl)acetal
- 1,4-Dimethoxy Benzene
- 1,10-Phenanthroline
- Stirring bar
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ NMR Spectra of Compounds

${ }^{13}$ CAR NMR $(101 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{d}) ~ \delta=156.8,153.2,138.4,133.6,128.5,124.0,118.8,116.7,113.1,91.4,85.3$ This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

[^0]

${ }^{13 C}$ CMR (101 MHz, CHLOROFORM-d) $\delta=156.7,155.5,139.6,138.4,129.5,124.4,118.8,115.2,91.2,87.2,85.3$

$\begin{aligned} & \text { 13C NMR }(101 \mathrm{MHz}, \mathrm{CHLOROFORM-d}) ~ \\ & \text { CARBON_cdcl3 }\end{aligned}=155.7,139.6,129.7,124.4,115.5,91.7,87.1$

 $\underset{\text { PROTON_Cdcl3_01 }}{5.20(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})}$

$\underset{\text { PROTON_cdcl3_02 }}{\text { H. }} 7.03(\mathrm{t}, ~ J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H})$

[^1]

 blpunodmos $\underset{\text { PROTON_ddcl_ _01 }}{\text { H. }} 6.81 \mathrm{~m}, ~, 6.81-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=2.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.70(\mathrm{qd}, J=0.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$

CARBON_ddCl_-01

$\underset{\text { PROTON_cdcl3_01 }}{1 \mathrm{H})} \mathbf{7 . 1 8 - 7 . 1 2 (\mathrm { m } , 4 \mathrm { H }) , 6 . 9 4 - 6 . 9 0 (\mathrm { m } , 3 \mathrm { H }) , 6 . 8 5 (\mathrm { dd } , J = 3 . 1 , 9 . 0 \mathrm { Hz } , 2 \mathrm { H }) , 5 . 6 3 (\mathrm { s } , 2 \mathrm { H }) , 3 . 8 0 (\mathrm { s } , 3 \mathrm { H }) , 3 . 7 6 (\mathrm { s } , 3 \mathrm { H })}$

CARBON_Cdcli_01
Ci

 -

 ${ }^{13} \mathrm{C}$ NMR (101 MHz, ,CHLOROFORM-d) $\delta=155.6,154.5,139.5,136.9,133.8,131.7,130.5,130.4,129.6,129.6,129.0,128.9,128.7,128.6,128.5,128.3$,

5ROTON_CdCl3_01
PR

 ${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM-d) $\delta=154.0,152.2,136.1,133.5,133.4,132.4,131.8,131.3,130.9,129.1,129.0,128.3,128.1,127.9,127.1,126.2$,

(td, $J=5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 2 \mathrm{H})$

$(\mathrm{m}, 3 \mathrm{H}), 6.86(\mathrm{ddd}, J=7.8,6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.66(\mathrm{~m}, 2 \mathrm{H})$

 CARBON_docis_01

 ${ }_{\text {PROTON_cdcl3_01 }}^{1 \mathrm{H}}, 7.27(\mathrm{dd}, J=3.52,4.70 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.96(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H})$

$J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.97(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 2 \mathrm{H})$
PROTON_cdli_01

112.5, 91.5, 56.3, 55.8

4H), $7.30-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (s, 2H)

 $\underset{\text { CARBON_Cdci3_01 }}{\text { 125.4. }} 123.116 .7,116.3,116.3,113.1,91.6$ ${ }^{13} \mathrm{C}$ NMR (CHLOROFORM-d ,101MHz): $\delta(\mathrm{ppm}) 156.3,153.5,139.6,135.1,133.8,133.6,131.7,131.3,128.6,128.3,127.5,127.0,126.0,126.0,125.8$,

[^0]: $\underset{\text { PROTON_cdcl3_02 }}{\mathrm{Hz}, 3 \mathrm{H})} 6.95 \mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{dt}, J=1.4,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 5.72(\mathrm{~s}, 6 \mathrm{H})$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CHLOROFORM}-\mathrm{d}$) $\delta=7.76(\mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.29(\mathrm{ddd}, J=1.6,7.2,8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.13(\mathrm{dd}, J=1.2,8.2$

[^1]: $\underset{\text { PROTON_Cdcli_02 }}{(\mathrm{m}, 1 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H})(1)}$

