Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information for

Cu(ClO₄)₂.6H₂O catalyzed solvent free per-*O*-acetylation and sequential one-pot conversions of sugars to thioglycosides

Debnath Chatterjee,^a Abhijit Paul,^a Rajkamal^a and Somnath Yadav^{*a}

Table of contents:

Fig. 1 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,2,3,4,6-penta-O-acetyl-α-D-glucopyranoside (2a)	S 4
Fig. 2 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,2,3,4,6-penta-O-acetyl-α-D-glucopyranoside (2a)	S5
Fig. 3 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,2,3,4,6-penta- <i>O</i> -acetyl-α-D-mannopyranoside (2b)	S 6
Fig. 4 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,2,3,4,6-penta- <i>O</i> -acetyl-α-D-mannopyranoside (2b)	S7
Fig. 5 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,2,3,4,6-penta- <i>O</i> -acetyl-D-galactopyranoside (2c)	S 8
Fig. 6 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,2,3,4,6-penta-O-acetyl-D-galactopyranoside (2c)	S9
Fig. 7 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,3,4,6-tetra- <i>O</i> -acetyl-2- <i>N</i> -acetyl-α-D-glucosamine (2d)	S10
Fig. 8 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,3,4,6-tetra-O-acetyl-2-N-acetyl-α-D-glucosamine (2d)	S11
Fig. 9 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,3,4,6-tetra- <i>O</i> -acetyl-2-phthalimido-2-deoxy-β-D-glucopyranoside (2e)	S12
Fig. 10 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,3,4,6-tetra- <i>O</i> -acetyl-2-phthalimido-2-deoxy-β-D-glucopyranoside (2e)	S13
Fig. 11 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranoside (2f)	S14
Fig. 12 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,3,4,6-tetra- <i>O</i> -acetyl-2-azido-2-deoxy-D-glucopyranoside (2f)	S15
Fig. 13 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1,2,3,4-Tetra-O-acetyl-D-xylopyranoside (2g)	S16
Fig. 14 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1,2,3,4-Tetra- <i>O</i> -acetyl-D-xylopyranoside (2g)	S17
Fig. 15 ¹ H-NMR spectra (400 MHz, CDCl ₃) of 1- <i>O</i> -Methyl-2,3,4,6-tetra- <i>O</i> -acetyl-α-D-glucopyranoside (2h)	S18
Fig. 16 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of 1- <i>O</i> -Methyl-2,3,4,6-tetra- <i>O</i> -acetyl-α-D-glucopyranoside (2h)	S19
Fig.17 ¹ H-NMR spectra (400 MHz, CDCl ₃) of Hexa-O-acetyl-myo-inositol (2i)	S20
Fig. 18 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of Hexa-O-acetyl-myo-inositol (2i)	S21
Fig. 19 ¹ H-NMR spectra (400 MHz, CDCl ₃) of Hexa-O-acetyl-D-mannitol (2j)	S22
Fig. 20 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of Hexa-O-acetyl-D-mannitol (2j)	S23

Fig. 21 ¹ H-NMR spectra (400 MHz, CDCl ₃) of D-maltose octa- <i>O</i> -acetate (2k)	S24
Fig. 22 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of D-maltose octa- <i>O</i> -acetate (2k)	S25
Fig. 23 ¹ H-NMR spectra (400 MHz, CDCl ₃) of Sucrose octa- <i>O</i> -acetate (21)	S26
Fig. 24 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of Sucrose octa- <i>O</i> -acetate (21)	S27
Fig. 25 ¹ H-NMR spectra (400 MHz, CDCl ₃) of Per- <i>O</i> -acetylated β-cyclodextrin (2m)	S28
Fig. 26 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of Per- <i>O</i> -acetylated β-cyclodextrin (2m)	S29
Fig. 27 ¹ H-NMR spectra (400 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6- <i>O</i> -acetyl-1-thio-β-D-glucopyranoside (3a)	S 30
Fig. 28 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6- <i>O</i> -acetyl-1-thio-β-D-glucopyranoside (3a)	S31
Fig. 29 ¹ H-NMR spectra (400 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6-tetra- <i>O</i> -acetyl-1-thio-α-D-mannopyranoside (3b)	S32
Fig. 30 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6-tetra- <i>O</i> -acetyl-1-thio- α -D-mannopyranoside (3b)	S33
Fig. 31 ¹ H-NMR spectra (400 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6-tetra- <i>O</i> -acetyl-1-thio-β-D-galactopyranoside (3c)	S34
Fig. 32 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 2,3,4,6-tetra- <i>O</i> -acetyl-1-thio-β-D-galactopyranoside (3c)	S35
Fig. 33 ¹ H-NMR spectra (400 MHz, CDCl ₃) of <i>p</i> -Tolyl 2-acetamido-3,4,6-tri- <i>O</i> -acetyl-2-deoxy-1-thio-β-D-glucopyranoside (3d)	S36
Fig. 34 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 2-acetamido-3,4,6-tri- <i>O</i> -acetyl-2-deoxy-1-thio-β-D-glucopyranoside (3d)	S37
Fig. 35 ¹ H-NMR spectra (400 MHz, CDCl ₃) of <i>p</i> -Tolyl 3,4,6-tri- <i>O</i> -acetyl-2-phthalimido-2-deoxy-1-thio-β-D-glucopyranoside (3e)	S38
Fig. 36 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 3,4,6-tri- <i>O</i> -acetyl-2-phthalimido-2-deoxy-1-thio-β-D-glucopyranoside (3e)	S39
Fig. 37 ¹ H-NMR spectra (500 MHz, CDCl ₃) of <i>p</i> -Tolyl 3,4,6-Tri- <i>O</i> -acetyl-2-azido-2-deoxy-1-thio-D-glucopyranoside (3f)	S40
Fig. 38 ¹³ C-NMR spectra (100 MHz, CDCl ₃) of <i>p</i> -Tolyl 3,4,6-Tri- <i>O</i> -acetyl-2-azido-2-deoxy-1-thio-D-glucopyranoside (3f)	S41

Fig. 1 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,2,3,4,6-penta- $\it O$ -acetyl- α -D-glucopyranoside (2a)

Fig. 2 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,2,3,4,6-penta-*O*-acetyl-α-D-glucopyranoside (**2a**)

Fig. 3 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,2,3,4,6-penta-*O*-acetyl-α-D-mannopyranoside (**2b**)

Fig. 4 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,2,3,4,6-penta-*O*-acetyl-α-D-mannopyranoside (**2b**)

Fig. 5 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,2,3,4,6-penta-*O*-acetyl-D-galactopyranoside (**2c**)

DC - 144	120.37	 	77.42 77.10 76.78	68.7 69.37 66.33 66.33 66.33	20.64 20.54 20.52 20.53

Fig. 6¹³C-NMR spectra (100 MHz, CDCl₃) of 1,2,3,4,6-penta-*O*-acetyl-D-galactopyranoside (2c)

Fig. 7 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,3,4,6-tetra-O-acetyl-2-N-acetyl- α -D-glucosamine (2d)

Fig. 8 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,3,4,6-tetra-*O*-acetyl-2-*N*-acetyl- α -D-glucosamine (2d)

Fig. 9 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,3,4,6-tetra-*O*-acetyl-2-phthalimido-2-deoxy-β-D-glucopyranoside (**2e**)

Fig. 10 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,3,4,6-tetra-*O*-acetyl-2-phthalimido-2-deoxy-β-D-glucopyranoside (**2e**)

Fig. 11 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,3,4,6-tetra-*O*-acetyl-2-azido-2-deoxy-D-glucopyranoside (2f)

Fig. 12 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,3,4,6-tetra-*O*-acetyl-2-azido-2-deoxy-D-glucopyranoside (2f)

Fig. 13 ¹H-NMR spectra (400 MHz, CDCl₃) of 1,2,3,4-Tetra-O-acetyl-D-xylopyranoside (2g)

Fig. 14 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1,2,3,4-Tetra-*O*-acetyl-D-xylopyranoside (2g)

Fig. 15 ¹H-NMR spectra (400 MHz, CDCl₃) of 1-*O*-Methyl-2,3,4,6-tetra-*O*-acetyl-α-D-glucopyranoside (**2h**)

Fig. 16 ¹³C-NMR spectra (100 MHz, CDCl₃) of 1-*O*-Methyl-2,3,4,6-tetra-*O*-acetyl- α -D-glucopyranoside (2h)

Fig. 17 ¹H-NMR spectra (400 MHz, CDCl₃) of Hexa-O-acetyl-myo-inositol (2i)

Fig. 18 ¹³C-NMR spectra (100 MHz, CDCl₃) of Hexa-O-acetyl-myo-inositol (2i)

Fig. 19 ¹H-NMR spectra (400 MHz, CDCl₃) of Hexa-O-acetyl-D-mannitol (2j)

Fig. 20¹³C-NMR spectra (100 MHz, CDCl₃) of Hexa-O-acetyl-D-mannitol (2j)

Fig. 21 ¹H-NMR spectra (400 MHz, CDCl₃) of D-maltose octa-*O*-acetate (2k)

Fig. 22 ¹³C-NMR spectra (100 MHz, CDCl₃) of D-maltose octa-O-acetate (2k)

Fig. 23 ¹H-NMR spectra (400 MHz, CDCl₃) of Sucrose octa-O-acetate (2I)

Fig. 24 ¹³C-NMR spectra (100 MHz, CDCl₃) of Sucrose octa-O-acetate (2I)

Fig. 25 ¹H-NMR spectra (400 MHz, CDCl₃) of Per-*O*-acetylated β-cyclodextrin (**2m**)

Fig. 26 ¹³C-NMR spectra (100 MHz, CDCl₃) of Per-O-acetylated β -cyclodextrin (2m)

Fig. 27 ¹H-NMR spectra (400 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-*O*-acetyl-1-thio-β-D-glucopyranoside (**3a**)

Fig. 28 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-*O*-acetyl-1-thio-β-D-glucopyranoside (**3a**)

Fig. 29 ¹H-NMR spectra (400 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-mannopyranoside (**3b**)

Fig. 30 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio-α-D-mannopyranoside (**3b**)

Fig. 31 ¹H-NMR spectra (400 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio-β-D-galactopyranoside (**3c**)

Fig. 32 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 2,3,4,6-tetra-*O*-acetyl-1-thio- β -D-galactopyranoside (3c)

Fig. 33 ¹H-NMR spectra (400 MHz, CDCl₃) of *p*-Tolyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-1-thio-β-D-glucopyranoside (**3d**)

Fig. 34 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy-1-thio-β-D-glucopyranoside (3d)

Fig. 35 ¹H-NMR spectra (400 MHz, CDCl₃) of *p*-Tolyl 3,4,6-tri-*O*-acetyl-2-phthalimido-2-deoxy-1-thio-β-D-glucopyranoside (**3e**)

Fig. 36 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 3,4,6-tri-*O*-acetyl-2-phthalimido-2-deoxy-1-thio-β-D-glucopyranoside (3e)

Fig. 37 ¹H-NMR spectra (500 MHz, CDCl₃) of *p*-Tolyl 3,4,6-Tri-*O*-acetyl-2-azido-2-deoxy-1-thio-D-glucopyranoside (3f)

Fig. 38 ¹³C-NMR spectra (100 MHz, CDCl₃) of *p*-Tolyl 3,4,6-Tri-*O*-acetyl-2-azido-2-deoxy-1-thio-D-glucopyranoside (3f)