SUPPORTING INFORMATION

Disposable ionic liquid-coated etched stainless steel fiber for headspace solid-phase microextraction of organophosphorus flame retardants from water samples

Haiyan Kang, Xianli Wang, Yan Zhang, Junfeng Wu*, Hongqiang Wang

(School of Municipal and Environmental Engineering, Henan University of Urban

Construction, Pingdingshan, 467036, China)

* Corresponding author. Tel.: +86 375 2089079

E-mail addresses: wangxianli1223@163.com (J.F. Wu)

The preparation of IL-coated fused-silica SPME fiber

With regard to the preparation of IL-coated fused-silica SPME fiber, the protective polyimide layer of a 1 cm segment of a 10 cm fused-silica fiber was removed using microflame torch ⁴² prior to coating. The fiber was then washed with methanol and dichloromethane successively, and conditioned at 160°C under nitrogen for 2 min in the GC injection port and then cooled to room temperature. The other coating procedure was same with the above-mentioned coating process of the IL-coated etched stainless steel fiber.

Chromatographic conditions

The column temperature was programmed as follows: initial oven temperature 80 °C (held for 1 min), increased to 140 °C at a rate of 20 °C min⁻¹ (held for 2 min), and then increased to 280 °C at a rate of 4 °C min⁻¹ (held for 6 min). Both injector and detector temperatures were set at 250 °C. Helium (99.999%) was used as the carrier gas at a constant flow of 1.5 mL min⁻¹, and nitrogen (99.999%) was used as the make-up gas at a flow rate of 20 mL min⁻¹. Synthetic air (99.995%) and hydrogen (99.999%) were used as detector gases at flows of 100 and 65 mL min⁻¹, respectively.

Figure S1. Effect of extraction time on extraction efficiency of the PFRs. Other experiment conditions: extraction temperature, 60 °C; stirring speed, 600 rpm; the concentration of salt, 30% (w/v); desorption time, 5 min.

Figure S2. Effect of extraction temperature on extraction efficiency of PFRs. Other experiment conditions: extraction time, 40 min; stirring speed, 600 rpm; the concentration of salt, 30% (w/v); desorption time, 5 min.

Figure S3. Effect of stirring speed on extraction efficiency of PFRs. Other experiment conditions: extraction time, 40 min; extraction temperature, 60 °C; the concentration of salt, 30% (w/v); desorption time, 5 min.

Figure S4. Effect of the addition of salt on extraction efficiency of PFRs. Other experiment conditions: extraction time, 40 min; extraction temperature, 60 °C; stirring speed, 600 rpm; desorption time, 5 min.

Figure S5. Effect of desorption time on extraction efficiency of PFRs. Other experiment conditions: extraction time, 40 min; extraction temperature, 60 °C; stirring speed, 600 rpm; the concentration of salt, 30% (w/v).

Table S1

Physicochemical properties of eight OPEs.

$R_1 $ $R_2 $ R_3			
Compound	Substituents	$\log K_{\mathrm{ow}}{}^{\mathrm{a}}$	Solubility in water (mg/L)
ТСЕР	$R_1 = R_2 = R_3 = - \int Cl$	1.44	7.0×10 ³
TPP	$R_1 = R_2 = R_3 = -/-$	1.87	827
TCIPP	$R_1 = R_2 = R_3 = \overline{\begin{array}{c}} Cl \\ \hline \end{array}$	2.59	1.6×10 ³
TDCIPP	$R_1 = R_2 = R_3 =Cl$	3.8	1.50
TNBP	$R_1 = R_2 = R_3 = \bigvee \bigvee$	4.00	280
TPHP	$R_1 = R_2 = R_3 =$	4.59	7.4×10 ⁻²
TEHP	$R_1 = R_2 = R_3 =$	9.49	0.6

^a Data taken from Syracuse Research Corporation database of physico-chemical properties (<u>http://www.syrres.com/eSc/physdemo.htm</u>).