Aryl Tosylates as Non-Ionic Photoacid Generators (PAGs).

Photochemistry and Applications in Cationic Photopolymerizations

Edoardo Torti,[‡] Gioia Della Giustina,[†] Stefano Protti,^{*,‡} Daniele Merli,[§] Giovanna Brusatin,[†] Maurizio Fagnoni^{*,‡}

[‡] Photogreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy

[†] Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy [§] Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy

Fax: +39 0382 987323; *Tel:* +39 0382 987198. *E-mail: fagnoni@unipv.it; prottistefano@gmail.com*

Supporting Information

37 Pages

1	Photophysical and photochemical data of aryl tosylates 1a-g	S2
2	Potentiometric titrations of a 10 ⁻² M solution of compounds	
1a-d,	1f-g after irradiation (t _{irr} = 2 h) in MeOH.	S8
3.	Irradiation and LFP experiments on 1b and 1d	S14
4.	¹ H and ¹³ C spectra of compounds 1a-g, 3a, 3b, 3g	S16

1. Photophysical and photochemical data of aryl tosylates 1a-g.

ArOTs	$\epsilon/L (mol^{-1} cm^{-1})^a$	$\lambda_{em}, \Phi_F \times 10^{-2}$	$\Phi_{-1}{}^b$
1 a	7400	378, 0.31	0.11
1b	1826	344, 0.92	0.14
1c	1131	-	0.14
1d	18900	-	0.29
1e	5510	-	< 0.01
1f	2450	-	0.11
1g	1460	-	0.21

Table S1: Photophysical and photochemical data of aryl tosylates 1a-g in neat methanol.

^a Molar absorption coefficient at 254 nm. ^b Disappearance quantum yield measured on a 10^{-2} M **1a**g solution in MeOH ($\lambda = 254$ nm, 1×15W Hg lamp) by using potassium ferrioxalate as actinometer.

Table S2. Irradiation of Aryl Tosylate 1b in Neat Solvents^a

^a A nitrogen saturated solution of **1b** (10^{-2} M) in the chosen solvent irradiated at 254 nm (4×15 W Hg lamps) until a >80% consumption of **1b** was achieved (2h). Product yields calculated on the basis of the amount of **1b** consumed. ^b from Luo, Y-R.; Handbook of Bond Dissociation Energies in Organic Compounds, CRC Press , Boca Raton, Florida, 2003 ^c Relative polarity, from Christian Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH Publishers, 3rd ed., 2003. ^d Disappearance quantum yield (Φ_{-1}) measured on a 10^{-2} M **1b** solution in the chosen solvent ($\lambda = 254$ nm, 1×15W Hg lamp) by using potassium ferrioxalate as actinometer.

UV-vis spectra of compounds 1a-g.

Figure S1. UV-vis spectrum of **1a** (5×10^{-5} M) in MeOH.

Figure S2. UV-vis spectrum of **1b** $(5.2 \times 10^{-5} \text{ M})$ in MeOH.

Figure S3. UV-vis spectrum of $1c (5 \times 10^{-5} \text{ M})$ in MeOH.

Figure S4. UV-vis spectrum of 1d $(1.25 \times 10^{-5} \text{ M})$ in MeOH

Figure S5 UV-vis spectrum of **1e** $(1.25 \times 10^{-5} \text{ M})$ in MeOH.

Figure S6 UV-vis spectrum of **1f** $(2.5 \times 10^{-5} \text{ M})$ in MeOH.

Figure S7 UV-vis spectrum of 1g (3.2×10⁻⁵ M) in MeOH.

2. Potentiometric titrations of a 10^{-2} M solution of compounds 1a-d, 1f-g after irradiation ($t_{irr} = 2$ h) in MeOH.

Figure S8 Potentiometric titration of a 10^{-2} M solution of 1a after irradiation in N₂-saturated MeOH.

Figure S9 Potentiometric titration of a 10^{-2} M solution of 1a after irradiation in O₂-saturated MeOH.

Figure S10 Potentiometric titration of a 10^{-2} M solution of 1b after irradiation in N₂-saturated MeOH.

Figure S11 Potentiometric titration of a 10^{-2} M solution of 1b after irradiation in O₂-saturated MeOH.

Figure S12 Potentiometric titration of a 10^{-2} M solution of 1c after irradiation in N₂-saturated MeOH.

Figure S13 Potentiometric titration of a 10^{-2} M solution of 1c after irradiation in O₂-saturated MeOH.

Figure S14 Potentiometric titration of a 10^{-2} M solution of 1d after irradiation in N₂-saturated MeOH.

Figure S15 Potentiometric titration of a 10^{-2} M solution of **1d** after irradiation in O₂-saturated MeOH.

Figure S16 Potentiometric titration of a 10^{-2} M solution of **1f** after irradiation in N₂-saturated MeOH.

Figure S17 Potentiometric titration of a 10^{-2} M solution of 1f after irradiation in O₂-saturated MeOH.

Figure S18 Potentiometric titration of a 10^{-2} M solution of 1g after irradiation in N₂-saturated MeOH.

Figure S19 Potentiometric titration of a 10^{-2} M solution of 1g after irradiation in O₂-saturated MeOH.

3. Irradiation and LFP experiments on 1b and 1d

Figure S20 Absorption spectra of **1d** (2.9×10^{-5} M) in N₂ saturated MeOH during irradiation (1×15 W Hg lamp, $\lambda_{em} = 254$ nm).

Figure S21 UV-vis spectrum of 2d $(2.6 \times 10^{-5} \text{ M})$ in MeOH.

Figure S22 Transient spectra of a solution of **1b** (10⁻⁴ M) in Argon saturated methanol recorded 150 μ s after a 20 ns laser pulse ($\lambda = 266$ nm).

4. ¹H and ¹³C spectra of compounds 1a-g and 3a, 3b, 3g.

8

ppm

1

777.65 774.68 738.88

4

5

6

3

5

3b, ¹H NMR of the mixture (δ , CDCl₃).

3c, ¹H NMR of the mixture (δ , CDCl₃).

3g, ¹H NMR of the mixture (δ , CDCl₃).

