Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting information

The hydrolysis of phenyl trifluoroacetate in AOT/*n*-heptane RMs as a sensor of the encapsulated water structure

O. Fernando Silva*a, Rita H. de Rossia, N. Mariano Correa*b

^aInstituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET. Facultad de Ciencias Químicas. Departamento de Química Orgánica. Universidad Nacional de Córdoba. Ciudad Universitaria. (X5000HUA) Córdoba. Argentina. ^b Departamento de

Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. (X5804ALH) Río

Cuarto, Argentina

Figure S1	S2
Figure S2	S2
Deduction of Eq. 4	S3
Table S1	S4
Figure S3	S4

Figure S1. Absorption spectra of PFTA in AOT (0.3 M)/*n*-heptane at (a) W=0 and W=10 at (b) 0.5, (c) 23, (d) 93 minutes and (e) 48 hours. The arrow indicates the direction of spectral change over time

Figure S2. Influence of the concentration of AOT on k_{obs} in the hydrolysis of PTFA at W = 5 (fill squares), 15 (fill circles) and 30 (open squares) at 25.0 °C. The data were fitted using Eq. 7.

Deduction of Eq. 4

$$[PTFA]i = [PTFA]o.[AOT].K_o$$

$$[PTFA]w = [PTFA]i. W. Kw. = [PTFA]o.W. Kw. Ko. [AOT]$$

$$[PTFA]t = [PTFA]o + [PTFA]i + [PTFA]w$$

$$[PTFA]t = [PTFA]o + [PTFA]o.K_o. [AOT] + [PTFA]o.W. Kw. Ko. [AOT] =$$

$$= [PTFA]o \{1 + [AOT].K_o. + W. Kw. Ko. [AOT]\}$$

$$[PTFA]o = \frac{[PTFA]t}{1 + K_o.[AOT] + W. Kw. Ko. [AOT]}$$

$$- \frac{\partial PTFA}{\partial t} = ki.[PTFA]i + kw.[PTFA]w$$

$$= ki.\{[AOT].[PTFA]o.K_o\} + kw.\{[PTFA]o.W. Kw. Ko. [AOT]\}$$

$$= [PTFA]o [AOT].(ki.Ko + kw.W. Kw. Ko)$$

$$- \frac{\partial PTFA}{\partial t} = \frac{[PTFA]t.[AOT].(ki.Ko + kw.W. Kw. Ko. [AOT]}{1 + K_o.[AOT] + W. Kw. Ko. [AOT]}$$

$$kobs = \frac{[AOT].(ki.Ko + kw.W. Kw. Ko]}{1 + K_o.[AOT] + W. Kw. Ko. [AOT]}$$

S	lope _{k-w} .		Or	dina	ite.		
AOT/n-heptane RM	s at 25 °C	·-					
(Figure 3) at differe	ent [AOT]	for h	ydroly	sis	of Pl	ГFA	in
Table S1. Values	of slope	from	plots	of	\mathbf{k}_{obs}	VS.	W

[AOT] <i>,</i> M	slope _{k-W} ,	Ordinate,			
	10 ⁻⁴ min ⁻¹	10 ⁻³ min ⁻¹			
0.1	3.87	-(0.3±0.2)			
0.2	7.6	-(0.7±0.4)			
0.3	13	-(0.9±0.9)			
0.4	17.4	-(3±2)			
0.5	21.4	-(3±1)			

Figure S3. Plot of *slope* $_{k-W}$ vs. [AOT] for hydrolysis PTFA in AOT/*n*-heptane RMs at 25 °C (r²=0.996); The parameter of the straight line are slope= (4.5 ± 0.1) x10⁻³ min⁻¹ and intercept=-(8±5)x10⁻⁵ min⁻¹).