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Computational details: All the calculations were performed with the program package

TURBOMOLE 6.4 using density functional theory (DFT).!- 2 The BP86 functional and TZVP

basis set together with the resolution-of-the-identity (RI) approximation3-3 (RI-BP86/TZVP in

short) was employed for the structure optimization procedure. Numerical frequency calculations

of the optimized structures were done to ensure that the optimized structures were true minima

not the transition states.
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Aggregation properties of 3: The aggregates of 3 were prepared by mixing 1 mL of water to a 1
mL DMF solution of 3 (2.04x10~> M) with constant stirring at room temperature (298K). 3 in a
1:1 DMF and H,O mixture (mole fraction of DMF was ~0.2) shows a Soret band at around 412
nm (Fig. S21). A time dependent profile of UV-Vis spectra was recorded for 3 in a 1:1 DMF and
H,0 mixture. Absorbance spectra were recorded on 10 minutes interval (Fig. S21). With the
progression of time the Soret band of corrole, 3, decreases in intensity, however a new band at
around 503 nm grows slowly. In addition to this new band, the intensity of the Q-band also
slightly increases. A significant red shift of the Q band was observed in the UV-Visible spectra
of 3 in a 1:1 mixture of DMF and H,0 in comparison to the spectra of 3 in the pure toluene
solvent. A new band at around 724 nm also appears. As per the previous literature, these
changes in UV-Vis spectra suggest the formation of aggregates.! The formation of aggregates in
binary solvent mixture for porphyrin related derivatives is not uncommon.! The dynamic light
scattering experiment (DLS) of these solutions was performed to measure the size distribution of
these aggregates (Fig. S22). A time dependent profile of DLS measurement was also done on 10
minutes interval. However it was observed that the size of the aggregates does not change
significantly with the progression of time. Average size distribution of the aggregates was

observed in the range of 390-410 nm.
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Z-scan experimental set-up using Yb-fiber laser source; FI: Fiber laser;
HWP:Half-wave plate; PBS: Polarizing beam-splitter; L: Lens (f =100 mm); TS:
Translation stage (10 cm travel; S: Sample; A: Aperture (S ~ 0.3); PDI:
Reference photodetector; PD2: Signal photodetector

'H NMR spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole)
in CDCls.

ESI- MS spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole)
in CH3CN shows the measured spectrum with isotopic distribution pattern.

'H NMR spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, 1 in CDCl;.
ESI- MS spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, 1 in CH;CN
shows the measured spectrum with isotopic distribution pattern.
Fluorescence decay profiles of (a) 1, (———); dem = 676 nm, (b) 2, (
Aem = 654 nm, and (c) 3, (

);

); dem = 661 nm. The black line represents
experimental data, whereas the red line represents best fit.

'H NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CDCl;.

BC NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CDCl;.

ESI- MS spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CH3;CN shows the measured spectrum with isotopic
distribution pattern.

'H NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl)
corrole, 3 in CDCls.

BC NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl)
corrole, 3 in CDCl;.

ESI- MS spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl)
corrole, 3 in CH;CN shows the measured spectrum with isotopic distribution
pattern.

X-ray single crystal structure analysis of 10-(4-hydroxyphenyl)-5,15-bis(2-
bromo-5-fluorophenyl) corrole, 3, (a) O—H...N interactions, [2.86 A] (b) n- «

stacking interactions [3.51 A]. The entries in square brackets are the distances. (c)
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Table S1.

ORTEP diagram of 3. Solvent molecules are removed for clarity. Ellipsoids are

drawn at 30% probability.

SEM images of the 1 in dichloromethane — methanol mixture; nanospheres are
seen.

SEM images of the 3 in dichloromethane — methanol mixture; nanodiscs are seen.
Particle size distribution histograms of nanodiscs of 3.

EDX elemental analysis obtained from the nanospheres of 1 showing the presence

of the entire constituent elements: C, N, and O.

EDX elemental analysis obtained from the nanobulbs of 2 showing the presence
of the entire constituent elements: C, N, O, F, Cl, and Br.

EDX elemental analysis obtained from the nanodiscs of 3 showing the presence of
the entire constituent elements: C, N, O, F, and Br.

DFT optimized (BP-86/TZVP) structures of (a) 1, (b) 2, and (c) 3.

Changes in the UV-Vis spectrum of 3 on letting it stay in a DMF and H,O (1:1)
mixture. Measurements are made at 10 minutes interval.

Changes in particle size distribution of the aggregates of 3 on letting it stay in a
DMF and H,O (1:1) mixture. Measurements are made at 10 minutes interval.

orpa values for related compounds.
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Figure S1.  Z-scan experimental set-up using Yb-fiber laser source; FI: Fiber laser;
HWP:Half-wave plate; PBS: Polarizing beam-splitter; L: Lens (f =100 mm); TS:
Translation stage (10 cm travel; S: Sample; A: Aperture (S ~ 0.3); PDI:
Reference photodetector; PD2: Signal photodetector
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Figure S2.

in CDC13

'H NMR spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole)
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Figure S3.  ESI- MS spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole)

in CH3CN shows the measured spectrum with isotopic distribution pattern.
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"H NMR spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, 1 in CDCl;.

Figure S4.
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Figure S5.  ESI- MS spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, 1 in CH3CN

shows the measured spectrum with isotopic distribution pattern.
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Figure S7. 'H NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CDCl;.
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Figure S8. '3C NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CDCl;.
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Figure S9. ESI- MS spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-
fluorophenyl) corrole, 2, in CH3;CN shows the measured spectrum with isotopic

distribution pattern.
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Figure S11. 3C NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl)
corrole, 3 in CDCls.
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Figure S12. ESI- MS spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl)
corrole, 3 in CH;CN shows the measured spectrum with isotopic distribution

pattern.
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Figure S13.

X-ray single crystal structure analysis of 10-(4-hydroxyphenyl)-5,15-bis(2-

bromo-5-fluorophenyl) corrole, 3, (a) O—H...N interactions, [2.86 A] (b) n- =
stacking interactions [3.51 A]. The entries in square brackets are the distances. (c)
ORTEP diagram of 3. Solvent molecules are removed for clarity. Ellipsoids are

drawn at 30% probability.



Figure S14.

300 nm EHT = 5.00 kV Signal A =InLens  pixel Size = 5.608 nm Date :26 Feb 2014 NISER
WD=51mm Mag= 6637KX TitAngle= 00" Time :14:27:40

SEM images of the 1 in dichloromethane — methanol mixture; nanospheres are
seen.
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Figure S15.
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100 nm EHT = 5.00kV Signal A=InLens  pixel Size = 977.2 pm Date :5 Mar 2014 NISER
WD=41mm Mag= 38088KX TitAngle= 00° Time :18:15:23

SEM images of the 3 in dichloromethane — methanol mixture; nanodiscs are seen.
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Particle size distribution histograms of nanodiscs of 3.
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Figure S17. EDX elemental analysis obtained from the nanospheres of 1 showing the presence

of the entire constituent elements: C, N, and O.
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Figure S18. EDX elemental analysis obtained from the nanobulbs of 2 showing the presence

of the entire constituent elements: C, N, O, F, CI, and Br.
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Figure S19.

EDX elemental analysis obtained from the nanodiscs of 3 showing the presence of

the entire constituent elements: C, N, O, F, and Br.



Figure S20.

DFT optimized (BP-86/TZVP) structures of (a) 1, (b) 2, and (c) 3.
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Figure S21
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Changes in the UV-Vis spectrum of 3 on letting it stay in a DMF and H,O (1:1)

mixture. Measurements are made at 10 minutes interval.
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Figure S22  Changes in particle size distribution of the aggregates of 3 on letting it stay in a

DMEF and H,O (1:1) mixture. Measurements are made at 10 minutes interval.



Table S1 orpa values for related compounds
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Compound Solvent Method n Orpa Ref.

TTC CH,Cl, Z-scan -60x10716 (cm%W) 1408-5410 GM 16

TPC CH,Cl, Z-scan -100x10716 (cm¥W)  2301-2576 GM 16

PTTC CH,Cl, Z-scan 5.1x10716 (cmYW)  233-543  GM 16
GeTTC CH,Cl, Z-scan -7.6x10716 (cm?/W) 112-239  GM 16
Asz-Corroles CCly 130+26 GM 15
DH;CD CH,Cl, Z-scan 1100 GM 54
DH,CD CH,Cl, Z-scan 3700 GM 54
DZnCD CH,Cl, Z-scan 4600 GM 54

H,TPP Toluene 1-25 GM 55

la CHCl, 56(8) GM 56

1b CHCl; 187 (62) GM 56

CuTPP CHCL, 101 (32 GM 56

PEP CHCl, <5 GM 56
AF-250 CHCl; 30 GM 56
BDPAS-porphyrin Different 1000 GM 57

dyad Solvents

4D CHCl; 370 GM 58

5D CHCl, 7600 GM 58

5M CHCl; 1800 GM 58

™ CHCl; 1200 GM 58

8 CHCls 1000 GM 58
Porphycenes CHCl; Z-scan 8-21x10° GM 59

1 Toluene Z-scan 16.8x10718 (m%W)  5.7x107? m/W This work
2 Toluene Z-scan 7.8x10718 (m¥'W) 1.9x10712 m/W This work
3 Toluene Z-scan 25.9x10°18 (m%W)  17x1012m/W This work
1-nano - Z-scan 1.1 x10715 (m*/W) 4.0 x107'0 m/W This work
2-nano - Z-scan 1.9 x10715 (m*/W) 2.0x10710 m/W This work
3-nano - Z-scan 71.8x10715 (m*/W) 444x10710 m/W This work




