# Supporting Information

# Effect of Dye End Groups in Non-Fullerene Fluorene- and Carbazole-Based Small Molecule Acceptors on Photovoltaic Performance

Yujeong Kim,<sup>a</sup> Chang Eun Song,<sup>b</sup> Sang-Jin Moon,<sup>b</sup> Eunhee Lim<sup>a,†</sup>

<sup>a</sup>Department of Chemistry, Kyonggi University, San 94-6, Iui-dong, Yeongtong-gu, Suwon-si, Gyeonggi 443-760, Republic of Korea

<sup>b</sup>Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Republic of Korea

\* Corresponding author: Tel. +82-31-249-9663; E-mail address: <u>ehlim@kyonggi.ac.kr</u>

### Contents

| 1. <sup>1</sup> H and <sup>13</sup> C NMR spectra | S3  |
|---------------------------------------------------|-----|
| 2. OPV characteristics                            | S7  |
| 3. Atomic force microscopy (AFM) images           | S11 |
| 4. UV absorption spectra of the films             | S12 |

#### List of Table

| Table S1 - OPV performances of P3HT:Cz-based acceptors and P3HT:PCBM under vario  | us |
|-----------------------------------------------------------------------------------|----|
| conditions                                                                        | 57 |
| Table S2 – OPV performances of P3HT:Flu-based acceptors under various conditionsS | 58 |
| Table S3 – OPV devices using small molecules as donors                            | 59 |

# List of Figures

| Figure S1 $-$ <sup>1</sup> H NMR spectra of <b>Cz-ECA</b> S3                             |
|------------------------------------------------------------------------------------------|
| Figure S2 – <sup>13</sup> C NMR spectra of Cz-ECAS3                                      |
| Figure S3 – <sup>1</sup> H NMR spectra of <b>Flu-ECA</b>                                 |
| Figure S4 – <sup>13</sup> C NMR spectra of <b>Flu-ECA</b>                                |
| Figure S5 $-$ <sup>1</sup> H NMR spectra of <b>Cz-IN</b> S5                              |
| Figure S6 – <sup>13</sup> C NMR spectra of <b>Cz-IN</b>                                  |
| Figure S7 – <sup>1</sup> H NMR spectra of <b>Flu-IN</b>                                  |
| Figure S8 – <sup>13</sup> C NMR spectra of <b>Flu-IN</b>                                 |
| Figure S9 – $J-V$ (left) and EQE (right) curves of OPV devices using (a) Flu-ECA and (b) |
| Flu-IN as acceptors with various blend ratios (D:A)                                      |
| Figure $S10 - J - V$ curves of OPV devices using small molecules as donorsS10            |
| Figure S11 – Phase images (2 $\times$ 2 $\mu$ m) of (a) P3HT:Cz-ECA, (b) P3HT:Cz-RH, (c) |
| P3HT:Cz-IN, (d) P3HT:Flu-ECA, (e) P3HT:Flu-RH, (f) P3HT:Flu-IN, and (g)                  |
| P3HT:PC <sub>61</sub> BM filmsS11                                                        |
| Figure S12 - UV-visible absorption spectra of the films spin-coated from chloroform      |

| solutionS12 |
|-------------|
|-------------|

# 1. <sup>1</sup>H and <sup>13</sup>C NMR spectra



Figure S1. <sup>1</sup>H NMR spectra of Cz-ECA.



Figure S2. <sup>13</sup>C NMR spectra of Cz-ECA.



Figure S4. <sup>13</sup>C NMR spectra of Flu-ECA.





Figure S6. <sup>13</sup>C NMR spectra of Cz-IN.



**Figure S7.** <sup>1</sup>H NMR spectra of **Flu-IN**.



Figure S8. <sup>13</sup>C NMR spectra of Flu-IN.

# 2. OPV characteristics

| Acceptor            | D:A ratio | $T_{\rm a} (^{\rm o}{\rm C})^a$ | $V_{\rm OC}$ (V) | $J_{\rm SC}$ (mA/cm <sup>2</sup> ) | FF (%) | PCE (%) |
|---------------------|-----------|---------------------------------|------------------|------------------------------------|--------|---------|
| Cz-ECA              | 1.0:1.5   | 80                              | 0.98             | 2.31                               | 42     | 0.96    |
|                     | 1.0:1.5   | 100                             | 1.00             | 2.34                               | 44     | 1.03    |
|                     | 1.0:1.5   | 120                             | 1.00             | 2.32                               | 43     | 1.00    |
| Cz-IN               | 1.0:1.5   | 80                              | 0.54             | 0.11                               | 27     | 0.02    |
|                     | 1.0:1.5   | 100                             | 0.61             | 0.13                               | 26     | 0.02    |
|                     | 1.0:1.5   | 120                             | 0.49             | 0.13                               | 26     | 0.02    |
| Cz-RH <sup>b</sup>  | 1.0:1.5   | 80                              | 1.03             | 4.82                               | 50     | 2.50    |
|                     | 1.0:1.5   | 100                             | 1.03             | 4.69                               | 53     | 2.56    |
|                     | 1.0:1.5   | 120                             | 1.03             | 4.63                               | 50     | 2.40    |
| PC <sub>61</sub> BM | 1.0:1.0   | W/O                             | 0.57             | 9.04                               | 60     | 3.14    |
|                     | 1.0:1.0   | 120                             | 0.59             | 8.59                               | 63     | 3.16    |
|                     | 1.0:1.0   | 150                             | 0.60             | 9.08                               | 61     | 3.34    |

Table S1. Photovoltaic properties of the small molecules fabricated under various conditions

<sup>*a*</sup> The films were annealed at the annealing temperature ( $T_a$ ) for 10 min. <sup>*b*</sup> Taken from ref. 35.

| Acceptor                           | D:A ratio | $T_{\rm a} \left(^{\rm o} {\rm C}\right)^a$ | $V_{\rm OC}$ (V) | $J_{\rm SC} ({\rm mA/cm}^2)$ | FF (%)  | PCE (%) |
|------------------------------------|-----------|---------------------------------------------|------------------|------------------------------|---------|---------|
| Flu-ECA                            | 1.0:0.5   | 80                                          | 1.01             | 2.31                         | 40      | 0.94    |
|                                    | 1.0:0.5   | 100                                         | 1.01             | 2.22                         | 2.22 41 |         |
|                                    | 1.0:0.5   | 120                                         | 1.00             | 2.48                         | 43      | 1.07    |
|                                    | 1.0:1.0   | 80                                          | 1.04             | 2.86                         | 41      | 1.23    |
|                                    | 1.0:1.0   | 100                                         | 1.03             | 2.82                         | 44      | 1.26    |
|                                    | 1.0:1.0   | 120                                         | 1.02             | 2.65                         | 41      | 1.10    |
|                                    | 1.0:1.5   | 80                                          | 1.03             | 2.96                         | 41      | 1.25    |
|                                    | 1.0:1.5   | 100                                         | 1.04             | 2.87                         | 42      | 1.25    |
|                                    | 1.0:1.5   | 120                                         | 1.03             | 2.91                         | 42      | 1.25    |
| Flu-IN                             | 1.0:0.5   | 80                                          | 0.83             | 2.74                         | 43      | 0.98    |
|                                    | 1.0:0.5   | 100                                         | 0.83             | 2.63                         | 43      | 0.95    |
|                                    | 1.0:0.5   | 120                                         | 0.54             | 1.45                         | 39      | 0.31    |
|                                    | 1.0:1.0   | 80                                          | 0.92             | 3.40                         | 42      | 1.32    |
|                                    | 1.0:1.0   | 100                                         | 0.92             | 3.20                         | 44      | 1.28    |
|                                    | 1.0:1.0   | 120                                         | 0.52             | 2.05                         | 35      | 0.38    |
|                                    | 1.0:1.5   | 80                                          | 0.91             | 2.90                         | 42      | 1.14    |
|                                    | 1.0:1.5   | 100                                         | 0.91             | 2.86                         | 42      | 1.11    |
|                                    | 1.0:1.5   | 120                                         | 0.43             | 1.17                         | 40      | 0.20    |
| $\mathbf{Flu}$ - $\mathbf{RH}^{b}$ | 1.0:1.0   | 90                                          | 1.01             | 5.22                         | 48      | 2.53    |
|                                    | 1.0:1.0   | 120                                         | 1.04             | 5.44                         | 51      | 2.89    |
|                                    | 1.0:1.0   | 150                                         | 1.04             | 5.29                         | 50      | 2.78    |
|                                    | 1.0:1.5   | 80                                          | 1.03             | 5.61                         | 51      | 2.95    |
|                                    | 1.0:1.5   | 120                                         | 1.03             | 5.52                         | 53      | 3.00    |
|                                    | 1.0:1.5   | 150                                         | 1.05             | 4.71                         | 53      | 2.60    |

Table S2. Photovoltaic properties of the small molecules fabricated under various conditions

<sup>*a*</sup> The films were annealed at the annealing temperature ( $T_a$ ) for 10 min. <sup>*b*</sup>Taken from ref. 35.



**Figure S9.** J-V (left) and EQE (right) curves of OPV devices using (a) **Flu-ECA** and (b) **Flu-IN** as acceptors with various blend ratios (D:A).



**Figure S10.** *J*–*V* curves of OPV devices using small molecules as donors.

| Donor   | $T_{\rm a} \left( {}^{\rm o}{\rm C} \right)^b$ | $V_{\rm OC}$ (V) | $J_{\rm SC}({\rm mA/cm}^2)$ | FF (%) | PCE (%) |
|---------|------------------------------------------------|------------------|-----------------------------|--------|---------|
| Cz-ECA  | 100                                            | 0.13             | 0.08                        | 34     | 0.00    |
| Cz-RH   | 100                                            | 0.36             | 0.18                        | 35     | 0.02    |
| Cz-IN   | 100                                            | 0.24             | 0.34                        | 36     | 0.03    |
| Flu-ECA | 100                                            | 0.06             | 0.06                        | 13     | 0.00    |
| Flu-RH  | 100                                            | 0.35             | 0.09                        | 34     | 0.01    |
| Flu-IN  | 80                                             | 0.21             | 0.07                        | 38     | 0.01    |

Table S3. OPV devices using small molecules as donors<sup>a</sup>

<sup>*a*</sup> ITO/PEDOT:PSS/small molecule:PC<sub>71</sub>BM (1:1)/LiF/Al. <sup>*b*</sup> The films were annealed at  $T_a$  for 10 min.

## 3. Atomic force microscopy (AFM) images



Figure S11. Phase images  $(2 \times 2 \ \mu m)$  of (a) P3HT:Cz-ECA, (b) P3HT:Cz-RH, (c) P3HT:Cz-

IN, (d) P3HT:Flu-ECA, (e) P3HT:Flu-RH, (f) P3HT:Flu-IN, and (g) P3HT:PC<sub>61</sub>BM films.

#### 4. UV absorption spectra of the films



Figure S12. UV-visible absorption spectra of the films spin-coated from chloroform solution.