Supporting Information

Metal free direct formation of various substituted pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amines and their further functionalization

Z. Tber, M.-A. Hiebel, H. Allouchi, A. El Hakmaoui, M. Akssira, G. Guillaumet and S. Berteina-

Raboin,*

Table of contents

¹ H and ¹³ C NMR spectrum compounds 1a-j	p.2
¹ H and ¹³ C NMR spectrum compounds 2a , 2f and 2i	p.12
¹ H and ¹³ C NMR spectrum compounds 3a-j	p.15
¹ H and ¹³ C NMR spectrum compounds 4a-b	p.25
¹ H and ¹³ C NMR spectrum compounds 5a-j and 5m-o	p.27
Crystallographic data of 1e and 5c	p.43

Pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1a)

¹H NMR (400.13 MHz, CDCl₃)

9-Chloropyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1b)

¹H NMR (400 MHz, DMSO-*d*₆)

9-Bromopyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1c)

¹H NMR (400 MHz, DMSO- d_6)

Methyl 5-aminopyrido[2',1':2,3]imidazo[4,5-c]isoquinoline-9-carboxylate (1d)

¹H NMR (400 MHz, DMSO- d_6)

5-Aminopyrido[2',1':2,3]imidazo[4,5-c]isoquinoline-9-carbonitrile (1e)

¹H NMR (400 MHz, DMSO-*d*₆)

9-Methylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1f)

¹H NMR (400 MHz, DMSO- d_6)

9-Methoxypyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1g)

¹H NMR (400 MHz, DMSO- d_6)

5-Aminopyrido[2',1':2,3]imidazo[4,5-c]isoquinoline-10-carbonitrile (1h)

¹H NMR (400 MHz, DMSO- d_6)

<u>10-Methylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1i)</u>

¹H NMR (400 MHz, DMSO-*d*₆)

9-Chloropyridazino[6',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (1j)

¹H NMR (400 MHz, DMSO-*d*₆)

1,3-Bis (2-pyridylimino)isoindole (BPI)* (2a)

¹H NMR (250.13 MHz, CDCl₃)

1,3-Bis (5-methyl-2-pyridylimino)isoindole (2f)*

¹H NMR (250.13 MHz, CDCl₃)

1,3-Bis (4-methyl-2-pyridylimino)isoindole (2i)*

2-(3-tert-Butylamino-imidazo[1,2-a]pyridin-2-yl)-benzonitrile (3a)

¹H NMR (400.13 MHz, CDCl₃)

2-[3-(*tert*-Butylamino)-6-chloro-imidazo [1, 2-a] pyridin-2-yl] benzonitrile (3b)

¹H NMR (400.13 MHz, CDCl₃)

2-(6-Bromo-3-(*tert*-butylamino)imidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3c)

¹H NMR (400.13 MHz, CDCl₃)

Methyl 3-(tert-butylamino)-2-(2-cyanophenyl)imidazo[1,2-a]pyridine-6-carboxylate (3d)

¹³C NMR (101 MHz, CDCl₃)

<u>3-(*tert*-Butylamino)-2-(2-cyanophenyl)imidazo[1,2-a]pyridine-6-carbonitrile (3e)</u>

¹H NMR (400.13 MHz, CDCl₃)

2-(3-(*tert*-Butylamino)-6-methylimidazo[1,2-a]pyridin-2-yl)benzonitrile (3f)

-3.29 --2.36 0.0 -0.94 40-05-19-pos23-zt333 -7.07 -7.95 -774 -772 --770 --768 -7.47 -7.45 -7.45 -7.43 -8.11 -7.27 $\Pi \Pi$ ſ 8 ŝ 8.2 8.1 . 8.0 7.9 7.8 7.7 7.6 f1 (ppm) 7.5 7.4 7.3 7.2 7.1 . 7.0 CH -CH H₃C сń ulu 1.02 3.05 🚽 8.55 16 3 1 -2 -3 15 2 14 13 12 -1 11 Ó 10 9 8 7 6 f1 (ppm) 5 4

¹H NMR (400.13 MHz, CDCl₃)

2-(3-(*tert*-Butylamino)-6-methoxyimidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3g)

¹H NMR (400.13 MHz, CDCl₃)

2-(3-(*tert*-Butylamino)-7-isocyanoimidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3h)

2-(3-(*tert*-Butylamino)-7-methylimidazo[1,2-*a*]pyridin-2-yl)benzonitrile (3i)

¹H NMR (400.13 MHz, CDCl₃)

2-(3-(*tert*-Butylamino)-6-chloroimidazo[1,2-*b*]pyridazin-2-yl)benzonitrile (3j)

¹H NMR (400.13 MHz, CDCl₃)

2-[3-(1,1,3,3-Tetramethylbutylamino)imidazo[1,2-*a*]pyridin-2-yl]benzonitrile (4a)

¹H NMR (400.13 MHz, CDCl₃)

2-[6-chloro-3-(1,1,3,3-Tetramethylbutylamino)imidazo[1,2-a]pyridin-2yl]benzonitrile(4b)

¹H NMR (400.13 MHz, CDCl₃)

<u>N-Phenylpyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5a)</u>

¹³C NMR (101MHz, CDCl₃)

<u>N-(4-Methoxyphenyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5b)</u>

¹H NMR (400.13 MHz, CDCl₃)

N-(4-(Trifluoromethyl)phenyl)pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinoline-5-amine (5c)

¹H NMR (400.13 MHz, DMSO-*d6*)

¹³C NMR (101 MHz, DMSO-d6)

¹⁹ F NMR (376 MHz, DMSO-*d6*)

¹H NMR (400.13 MHz, DMSO-*d*₆)

<u>*N*-(3-(Trifluoromethyl)phenyl)pyrido[2',1':2,3]imidazo[4,5-*c*]isoquinoline-5-amine (5e)</u>

¹H NMR (400.13 MHz, DMSO-*d6*)

¹³C NMR (101MHz, DMSO-*d6*)

¹⁹ F NMR (376 MHz, DMSO-*d6*)

<u>N-(3-Nitrophenyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5f)</u>

¹H NMR (400.13 MHz, DMSO-*d6*)

¹³C NMR (101 MHz, DMSO-d6)

<u>N-(2-(Trifluoromethyl)phenyl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinoline-5-amine (5g)</u>

¹H NMR (400.13 MHz, CDCl₃)

¹⁹ F NMR (376 MHz, CDCl₃)

<u>N-(Pyridin-4-yl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5h)</u>

¹³C NMR (101 MHz, CDCl₃)

<u>N-(Pyridin-3-yl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5i)</u>

¹H NMR (400.13 MHz, CDCl₃)

<u>N-(Pyridin-2-yl)pyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-amine (5j)</u>

¹³C NMR (101 MHz, CDCl₃)

4-((9-Chloropyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-yl)amino)benzonitrile (5m)

¹H NMR (400.13 MHz, DMSO-*d*₆)

13 C NMR (101 MHz, DMSO- d_6)

4-((9-Bromopyrido[2',1':2,3]imidazo[4,5-c]isoquinolin-5-yl)amino)benzonitrile (5n)

¹H NMR (400.13 MHz, DMSO- d_6)

4-((9-Chloropyridazino[6',1':2,3]imidazo[4,5-c]isoquinolin-5-yl)amino)benzonitrile (50).

¹H NMR (400.13 MHz DMSO-*d*₆)

¹³C NMR (101 MHz, DMSO- d_6)

Crystallographic data collections and structural determinations.

Crystallographic studies of compound **1e** and **5c** were performed at room temperature (296 K) on a Bruker-Nonius Kappa-CCD diffractometer with Mo K α radiation (0.71073 Å). Only small, twinned and poor quality crystals were obtained, so that no significant reflection could be detected over $\theta = 19^{\circ}$. Unit-cell determination and refinement as well as data collection were carried out usinge Collect¹ and Dirax² programs. The data reduction data was performed using EvalCCD program³.

The structure determination, found by direct methods, and the refinement of atomic parameters, based on full-matrix least-squares on F^2 , were performed using the SHELX-2014 programs¹ within the WINGX package³.

Supplementary crystallographic data can be found in the CCDC deposit (CCDC 1046891-1046892), and obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif/.

- COLLECT, Bruker AXS BV, 1997-2004.
- Dirax/lsq, Duisenberg & Schreurs, 1989-2000.
- Sheldrick, G. M. *Programs for Crystal Structure Analysis*; University of Göttingen: Göttingen, Germany, 2014
- WinGX, Farrugia, J. Appl. Cryst. 45, 849-854, 2012.

Identification code	Compound 1e	Compound 5c
Empirical formula	C ₁₅ H ₁₁ N ₅ O ₂	$C_{23} H_{14} F_3 N_4 O$
Formula weight /g.mol ⁻¹	293.29	419.38
Temperature / K	296(2)	296(2)
Wavelength / Å	0.71073	0.71073
Crystal system	Triclinic	Monoclinic
Space group	P -1	C 2/c
Unit cell dimensions	a = 6.8520(10) Å; α = 102.68(4)°	$a = 43.065(3) \text{ Å}; \alpha = 90^{\circ}$
	$b = 9.607(5) \text{ Å}; \beta = 93.21(3)^{\circ}$	$b = 5.4072(11) \text{ Å}; \beta = 91.73(2)^{\circ}$
	$c = 10.857(7) \text{ Å}; \gamma = 92.50(3)^{\circ}$	$c = 17.347(8) \text{ Å}; \gamma = 90^{\circ}$
Volume / Å ³	695.0(6)	4038(2)
Ζ	2	8
Density (calculated)/ Mg/m ³	1.401	1.380
Absorption coefficient / mm ⁻¹	0.099	0.107
F(000)	304	1720
Crystal size / mm	0.25 x 0.15 x 0.10	0.20 x 0.15 x 0.03
Theta range for data collection	2.982 to 26.690°.	2.349 to 26.370°.
Index ranges	-8<=h<=8, -12<=k<=11, -	-53<=h<=53, -6<=k<=6, 0<=l<=21
	13<=]<=11	
Independent reflections	1872 [R(int) = 0.071]	4120 [R(int) = 0.1316]
Data / restraints / parameters	1872 / 6 / 212	4120 / 15 / 246

Table 1. Crystal data and structure refinement for table1.

Goodness-of-fit on F ²	1.067	1.221
Final R indices [I>2sigma(I)]	R1 = 0.1313, wR2 = 0.3112	R1 = 0.1407, wR2 = 0.3764
R indices (all data)	R1 = 0.2353, wR2 = 0.3824	R1 = 0.3147, wR2 = 0.4492
Largest diff. peak and hole / e.Å ⁻³	0.430 / -0.314	0.921 / -0.746
CCDC	1046891	1046892