Electronic Supplementary Information

Very efficient and broad-in-scope palladium-catalyzed Hiyama cross-coupling. The role of water and copper(I) salts.

Carla I. Traficante, Ernesto G. Mata* and Carina M.L. Delpiccolo*

Instituto de Química Rosario (CONICET – UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 – Rosario, Argentina

Content	Pages
1 Experimental Section	2
1.1 General	2
1.2 General Procedure 1: Hiyama Cross-coupling in Homogeneous Phase.	2
Characterization of compounds	3-13
2 References	14
3 ¹ H NMR and ¹³ C NMR Spectra	15-43

1.- Experimental Section

1.1.- General. ¹H NMR spectra were recorded in a Bruker Avance spectrometer at 300 MHz in CDCl₃ with tetramethylsilane (TMS) as internal standard. 13 C NMR spectra were recorded on the same apparatus at 75 MHz with CDCl₃ as solvent and reference (76.9 ppm). The chemical shifts (δ) are reported in ppm downfield from TMS and coupling constants (J) are expressed in hertz. Mass spectra were recorded on a Shimadzu QP2010 Plus apparatus at an ionization voltage of 70 eV equipped with a SPBTM-1 capillary column (internal diameter 0.25 mm, length 30 m). The high resolution mass spectra were obtained with a Bruker MicroTOF-Q II instrument (Bruker Daltonics, Billerica, MA). Detection of the ions was performed in electrospray ionization, positive ion mode. Solvents were dried using an MBraun solvent system (SPS-800). Analytical thin-layer chromatography (TLC) was carried out with silica gel 60 F254 pre-coated aluminum sheets. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). Elution was carried out with hexane-EtOAc mixtures, under positive pressure and employing gradient of solvent polarity techniques. Chemical reagents were purchased from commercial sources and were used without further purification unless noted otherwise. Solvents were analytical grade or were purified by standard procedures prior to use. Triethoxysilanes were commercially available except 2f and 2g which were prepared following the methodology described by DeShong¹.

1.2.- General Procedure: Aryl halide **1** (0.11 mmol), $Pd(PPh_3)_4$ (0.025 equiv.) and Cul (2 equiv.) were combined in a round bottom flask and placed under argon. THF (4 mL) were added, followed by phenyltriethoxysilane **2** (1.5 equiv.), TBAF (1.5 equiv., 1.0 M in THF) and H₂0 (0.2 mL). The flask was fitted with a condenser and the reaction mixture was stirred 7 h at 80 °C. The reaction mixture was evaporated and the crude product was analyzed by ¹H NMR and GC/MS and then purified by column chromatography (hexane-EtOAc).

Methyl 3'-methoxy-(1,1'-biphenyl)-4-carboxylate

H₃COOC

(3aa): employing General Procedure, with methyl 4iodobenzoate (1a) (30 mg, 0.11 mmol) as starting

material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3aa was isolated in 93% yield.

Characterization of **3aa**:² ¹H NMR (CDCl₃, 300 MHz) δ : 3.87 (s, 3H), 3.94 (s, 3H), 6.94 (dd, J = 8.1 and 1.9 Hz, 1H), 7.15 (t, J = 1.9 Hz, 1H), 7.21 (da, J = 8.1, 1H), 7.38 (t, J = 8.1 Hz, 1H), 7.65 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 52.2, 55.4, 113.0, 113.5, 119.8, 127.1, 129.0, 129.9, 130.1, 141.5, 145.5, 160.0, 167.0. GC/MS: ^{*t*}R 21.66 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 242 (M⁺), 211 (100).

Methyl-4-biphenylcarboxylate (<u>3ab</u>): employing General Procedure, with methyl 4-iodobenzoate (**1a**) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (**2b**),

desired product **3ab** was isolated in 84% yield.

Characterization of **3ab**:^{3 1}H NMR (CDCl₃, 300 MHz) $\overline{\delta}$: 3.95 (s, 3H), 7.36-7.51 (m, 3H), 7.60-7.70 (m, 4H), 8.12 (d, J = 8.26 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) $\overline{\delta}$: 52.1, 127.0, 127.2, 128.1, 128.9, 130.1, 140.0, 145.6, 167.0. GC/MS: ^tR 20.0 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 212 (M⁺), 181 (100).

Methyl 4'-methyl-(1,1'-biphenyl)-4-carboxylate (<u>3ac</u>): employing General Procedure, with methyl 4iodobenzoate (**1a**) (30 mg, 0.11 mmol) as starting

material and triethoxy(p-tolyl)silane (2c), desired product 3ac was isolated in 98% yield.

Characterization of **3ac**:⁴ ¹H NMR (CDCl₃, 300 MHz) δ : 2.41 (s, 3H), 3.94 (s, 3H), 7.27 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 8.09 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 21.1, 52.1, 126.7, 127.1, 128.5, 129.6, 130.0, 137.1, 138.1, 145.5, 167.0. GC/MS: ^{*t*}R 21.16 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 226 (M⁺), 195 (100).

Methyl 4'-methoxy-(1,1'-biphenyl)-4-carboxylate

(3ad): employing General Procedure, with methyl 4iodobenzoate (1a) (30 mg, 0.11 mmol) as starting

material and triethoxy(4-methoxyphenyl)silane (2d), desired product 3ad was isolated in 86% yield.

OCH₃

Characterization of **3ad**:^{2 1}H NMR (CDCl₃, 300 MHz) δ : 3.86 (s, 3H), 3.93 (s, 3H), 6.99 (d, J = 8.6 Hz, 2H), [7.57 (d, J = 8.6 Hz), 7.61 (d, J = 8.3 Hz), 4H], 8.08 (d, J = 8.3 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 52.1, 55.4, 114.4, 126.6, 128.4, 128.5, 130.1, 132.4, 145.2, 159.8, 167.0. GC/MS: ^{*t*}R 22.95 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 242 (M⁺, 100).

Methyl 4'-chloro-(1,1'-biphenyl)-4-carboxylate (<u>3ae</u>): employing General Procedure, with methyl 4iodobenzoate (**1a**) (30 mg, 0.11 mmol) as starting material and triethoxy(4-chlorophenyl) silane (**2e**), desired product **3ae** was isolated in 93% yield.

Characterization of **3ae**:^{5 1}H NMR (CDCl₃, 300 MHz) δ : 3.94 (s, 3H), 7.43 (d, J = 8.6 Hz, 2H), 7.55 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 8.10 (d, J = 8.6 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 52.2, 126.9, 128.5, 129.1, 129,2, 130.2, 134.3, 138.4, 144.3, 166.9. GC/MS: ^{*t*}R 22.1 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 246 (M⁺), 215 (100).

Methyl4'-Trifluoromethyl-(1,1'-biphenyl)-4-carboxylate (3af):employing General Procedure,with methyl 4-iodobenzoate (1a) (30 mg, 0.11 mmol)asstartingmaterialandtriethoxy(4-

(trifluoromethyl)phenyl)silane (2f), desired product 3af was isolated in 77% yield.

Characterization of **3af**:^{6 1}H NMR (300 MHz, CDCl₃) δ : 3.96 (s, 3H), 7.67 (d, J = 8.3 Hz, 2H), 7.73 (s, 4H), 8.14 (d, J = 8.3 Hz, 2H). ¹³C NMR (75 MHz, CDCl3): δ 52.4, 126.0 (q, J = 3.8 Hz), 126.1, 127.4, 127.8, 129.9, 130.4, 143.7, 143.7, 144.2, 166.9. GC/MS: ^{*t*}R 19.8 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 280 (M⁺), 249 (100).

OCH₃ Methyl 3'-methoxy-(1,1'-biphenyl)-3-carboxylate (3ba):

employing General Procedure, with methyl 3-iodobenzoate (1b) as starting material and triethoxy(3-(30 mg, 0.11 mmol) methoxyphenyl)silane (2a), desired product 3ba was isolated in 93% yield.

Characterization of **3ba**: 71 H NMR (CDCl₃, 300 MHz) δ : 3.88 (s, 3H), 3.95 (s, 3H), 6.93 (ddd, J = 8.0 and 2.6 Hz, 1H), 7.15 (t, J = 2.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.7 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.78 (ddd, 7.7, 1.6 and 1.2 Hz, 1H), 8.02 (dt, J = 7.7 and 1.6 Hz, 1H), 8.28 (t, J = 1.6 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 52.1, 55.3, 112.9, 113.1, 119.6, 128.2, 128.5, 128.8, 129.9, 130.6, 131.5, 141.3, 141.6, 160.0, 167.0. GC/MS: ^tR 21.2 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 242 (M⁺, 100).

> Methyl-3-biphenylcarboxylate (3bb): employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3bb was isolated in 78% yield.

Characterization of **3bb**:^{4 1}H NMR (CDCl₃, 300 MHz) δ: 3.95 (s, 3H), 7.34-7.56 (m, 4H), 7.63 (d, J = 7.1 Hz, 2H), 7.79 (d, J = 7.7 Hz, 1H), 8.02 (d, J = 7.7 Hz, 1H), 8.28 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 52.2, 127.1, 127.7, 128.2, 128.3, 128.8, 128.8, 130.7, 131.5, 140.1, 141.4, 167.0. GC/MS: ^tR 18.98 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 212 (M⁺), 181 (100).

COOCH₃

COOCH₃

Methyl 4'-methyl-(1,1'-biphenyl)-3 –carboxylate (3bc):

employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(ptolyl)silane (2c), desired product 3bc was isolated in 76%

vield.

Characterization of **3bc**:⁸ ¹H NMR (CDCl₃, 300 MHz) δ : 2.41 (s, 3 H), 3.95 (s, 3H), 7.27 (d, J = 8.3 Hz, 2 H), 7.47-7.55 (m, 3H), 7.77 (dt, J = 7.5 and 1.3 Hz, 1H), 8.0 (dt, J = 7.5 and 1.3 Hz, 1H), 8.28 (t, J = 1.3 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 21.1, 52.1, 126.9, 128.0, 128.8, 129.6, 130.6, 131.3, 137.2, 137.6, 141.4, 167.1. GC/MS: ^tR 19.9 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m*/*z* (%) 226 (M⁺, 100).

Methyl 4'-methoxy(1,1'-biphenyl)-3-carboxylate (3bd):

employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and triethoxy(4methoxyphenyl)silane (2d), desired product 3bd was isolated

in 92% vield.

Characterization of **3bd**:² ¹H NMR (CDCl₃, 300 MHz) δ : 3.86 (s, 3H), 3.95 (s, 3H), 7.00 (d, J = 8.7 Hz, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.57 (d, J = 8.7 Hz, 2H), 7.74 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 7.7 Hz, 1H), 8.24 (s, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 52.2, 55.2, 127.1, 127.7, 128.2, 128.3, 128.8, 128.8, 130.7, 131.5, 140.1, 141.4, 167.0. GC/MS: ^tR 21.9 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 242 (M⁺, 100).

Methyl 4'-chloro-(1,1'-biphenyl)-3-carboxylate (3be):

employing General Procedure, with methyl 3-iodobenzoate (1b) (30 mg, 0.11 mmol) as starting material and (4chlorophenyl)triethoxysilane (2e), desired product 3be was isolated in 85% yield.

Characterization of **3be**: 9 ¹H NMR (CDCl₃, 300 MHz) δ : 3.95 (s, 3H), 7.42 (d, J =8.6 Hz, 2H), 7.48-7.56 (m, 3H), 7.73 (dd, J = 7.6 and 1.5 Hz, 1H), 8.03 (dt, J = 7.6 and 1.3 Hz, 1H), 8.23 (t, J = 1.5 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ : 52.2, 128.0, 128.4, 128.6, 129.0, 129.0, 130.8, 131.3, 133.9, 138.5, 140.2, 166.8. GC/MS: ^tR 20.8 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 246 (M⁺, 100).

3'-methoxy-(1,1'-biphenyl)-2-carboxylate Methyl (3ca): employing General Procedure, with methyl 2-iodobenzoate (1c) (30 mg, 0.11 mmol) as starting material and triethoxy(3methoxyphenyl)silane (2a), desired product 3ca was isolated in

82% yield.

Characterization of **3ca**:² ¹H NMR (CDCl₃, 300 MHz) δ : 3.65 (s, 3H), 3.83 (s, 3H), 6.87-6.92 (m, 3H), 7.30 (t, J = 7.7 Hz, 1H), 7.37-7.44 (m, 2H), 7.52 (dt, J = 7.5 and 1.4 Hz, 1H), 7.79-7.82 (m, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 52.0, 55.2, 112.8, 113.8, 120.9, 127.2, 129.0, 129.6, 130.5, 131.0, 131.1, 142.2, 142.7, 159.3, 169.1. GC/MS: ^tR 19.19 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 242 (M⁺, 100).

Methyl-(1,1'-biphenyl)-2-carboxylate (3<u>cb</u>): employing General Procedure, with methyl 2-iodobenzoate (1c) (30 mg, 0.11 mmol) as starting material and triethoxy(phenyl)silane (2b), desired product 3cb was isolated in 90% yield. Characterization of 3cb:¹⁰ ¹H NMR (CDCl₃, 300 MHz) δ: 3.64 (s, 3H), 7.30-7.44 (m, 7H), 7.52 (td, J = 7.5 and 1.4 Hz, 1H), 7.83 (dd, J = 7.7 and 0.9 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ: 51.9, 127.1, 127.2, 128.0, 128.3, 129.7, 169.1, 130.8, 131.2, 141.3, 142.4, 169.1. GC/MS: ^tR 16.5 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 212 (M⁺), 181 (100).

COOCH₃

Methyl 4'-methyl-(1,1'-biphenyl)-2-carboxylate (<u>3cc</u>): employing General Procedure, with methyl 2-iodobenzoate (**1c**) (30 mg, 0.11 mmol) as starting material and triethoxy(ptolyl)silane (**2c**), desired product **3cc** was isolated in 88%

yield.

Characterization of **3cc**:^{11 1}H NMR (CDCl₃, 300 MHz) δ : 2.40 (s, 3H), 3.67 (s, 3H), 7.21 (s, 4H), 7.36-7.42 (m, 2H), 7.49-7.54 (m, 1H), 7.81 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ : 21.2, 51.9, 126.9, 128.8, 128.2, 129.7, 130.7, 130.8, 131.2, 136.9, 138.3, 142.4, 169.2. GC/MS: ^{*t*}R 17.7 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 226 (M⁺), 195 (100).

1-(3'-methoxy-[1,1'-biphenyl]-4-yl)ethanone (3da):

employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3da was isolated

in 91% yield.

Characterization of **3da**:¹⁶ ¹H NMR (CDCl₃, 300 MHz) δ : 2.63 (s, 3H), 3.87 (s, 3H), 6.95 (ddd, J = 7.9, 2.50 and 1.2 Hz, 1H), 7.15 (t, J = 1.2 Hz, 1H), 7.21 (dt, J = 7.9 and 1.2 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.67 (d, J = 8.5 Hz, 2H), 8.02 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 26.6, 55.3, 113.0, 113.5, 119.7,

127.2, 128.8, 129.9, 135.9, 141.3, 145.6, 160.0, 197.7. GC/MS: ^tR 21.2 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m*/*z* (%) 226 (M⁺), 211 (100).

1-([1,1'-biphenyl]-4-yl)ethanone (<u>3db</u>): employing General Procedure, with 4-iodoacetophenone (**1d**) (30 mg, 0.12 mmol) as starting material and triethoxy(phenyl)silane (**2b**), desired product **3db** was isolated in 88% yield.

Characterization of **3db**:^{4 1}H NMR (CDCl₃, 300 MHz) δ : 2.64 (s, 2.64), 7.40-7.50 (m, 3H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 26.6, 127.2, 127.2, 128.2, 128.9, 128.9, 135.8, 139.8, 145.7, 197.7. GC/MS: ^tR 18.4 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 196 (M⁺), 181(100).

H_3 1-(4'-methyl-[1,1'-biphenyl]-4-yl)ethanone (<u>3dc</u>):

employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(p-tolyl)silane (2c), desired product 3dc was

isolated in 93% yield.

Characterization of **3dc**:¹² ¹H NMR (CDCl₃, 300 MHz) δ : 2.41 (s, 3H), 2.63 (s, 3H), 7.28 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 8.02 (d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 21.1, 26.6, 126.9, 127.1, 128.9, 129.6, 135.6, 136.9, 138.2, 145.7, 197.74. GC/MS: ^{*t*}R 19.8 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 210 (M⁺), 195 (100).

1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethanone (<u>3dd</u>):

employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d), desired product

3dd was isolated in 85% yield.

Characterization of **3dd**:^{5 1}H NMR (CDCl₃, 300 MHz) δ : 2.62 (s, 3H), 3.86 (s, 3H), 7.00 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 26.6, 55.3, 114.4, 126.6, 128.3, 128.9, 132.2, 135.2, 145.3, 159.9, 197.7. GC/MS: ^tR 21.4 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). m/z (%) 226 (M⁺), 211 (100).

1-(4'-chloro-[1,1'-biphenyl]-4-yl)ethanone (3de):

employing General Procedure, with 4-iodoacetophenone (1d) (30 mg, 0.12 mmol) as starting material and (4-chlorophenyl)triethoxysilane (2e), desired product 3de was

isolated in 91% yield.

Characterization of **3de**:^{12 1}H NMR (CDCl₃, 300 MHz) δ : 2.64 (s, 3H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 7.65 (d, *J* = 8.5 Hz, 2H), 8.03 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 26.6, 127.0, 128.5, 129.0, 129.1, 134.4, 136.1, 138.2, 144.4, 197.5. GC/MS: ^tR 20.6 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 230 (M⁺), 215 (100).

3-methoxy-4'-methyl-1,1'-biphenyl (<u>3ea</u>): employing General Procedure, with 4-iodotoluene (**1e**) (30 mg, 0.14 mmol) as starting material and triethoxy(3methoxyphenyl)silane (**2a**), desired product **3ea** was isolated

in 76% yield.

Characterization of **3ea**:¹³ ¹H NMR (CDCl₃, 300 MHz) δ : 2.42 (s, 3H), 3.88 (s, 3H), 6.90 (d, *J* = 7.9 and 1.9 Hz, 1H), 7.14 (t, *J* = 1.9 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.36 (dd, *J* = 7.9 and 7.6 Hz, 1H), 7.52 (d, *J* = 8.0, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 21.1, 29.7, 55.2, 112.4, 112.7, 112.9, 119.5, 119.7, 127.0, 127.2, 127.4, 128.7, 129.4, 129.7, 137.2, 138.2, 142.7, 159.9. GC/MS: ^{*t*}R 18.2 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 198 (M⁺, 100).

H₃C

4-methoxy-4'-methyl-1,1'-biphenyl (<u>3ed</u>): employing General Procedure, with 4-iodotoluene (**1e**) (30 mg, 0.14 mmol) as starting material and triethoxy(4-

methoxyphenyl)silane (**2d**), desired product **3ed** was isolated in 93% yield. Characterization of **3ed**:^{5 1}H NMR (CDCl₃, 300 MHz) δ : 2.40 (s, 3H), 3.86 (s, 3H), 6.99 (d, *J* = 8.8 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 21.0, 55.3, 114.1, 126.6, 126.7, 127.9, 128.1, 128.7, 129.4, 133.7, 136.3, 137.9, 158.9. GC/MS: ^tR 18.0 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 198 (M⁺, 100). 3-methoxy-1,1'-biphenyl (<u>3fa</u>): employing General Procedure, with 4-iodobencene (1f) (36.6 mg, 0.18 mmol) as starting material and triethoxy(3-methoxyphenyl)silane (2a), desired product 3fd was isolated in 88% yield.

Characterization of **3fa**:^{14 1}H NMR (CDCl₃, 300 MHz) δ: 3.88 (s, 3H), 6.92 (dd, *J* = 5.7 and 2.3 Hz, 1H), 7.15-7.22 (m, 2H), 7.34-7.48 (m, 4H), 7.60-7.63 (m, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ: 55.3, 112.7, 112.9, 119.7, 127.2, 127.4, 128.7, 129.7, 141.1, 142.8, 159.9. GC/MS: ^{*t*}R 16.4 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 184 (M⁺, 100).

OCH₃ 4-methoxy-1,1'-biphenyl (<u>3fd</u>): employing General Procedure, with 4-iodobencene (1f) (36.6 mg, 0.18 mmol) as starting material and triethoxy(4-methoxyphenyl)silane (2d),

desired product **3fd** was isolated in 93% yield.

Characterization of **3fd**:^{5 1}H NMR (CDCl₃, 300 MHz) δ : 3.87 (s, 3H), 7.00 (d, J = 8.8 Hz, 2H), 7.31-7.35 (m, 1H), 7.41-7.45 (m, 2H), 7.55-7.60 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ : 55.3, 114.2, 126.6, 126.7, 128.1, 128.7, 133.8, 140.8, 159.1. GC/MS: ^tR 16.6 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 184 (M⁺, 100).

N,N-diethyl-[1,1'-biphenyl]-4-amine (<u>3gb</u>): employing General Procedure, with N,N-diethyl-4-iodoaniline (**1g**) (45 mg, 0.16

mmol) as starting material and triethoxy(phenyl)silane (**2b**), desired product **3gb** was isolated in 65% yield.

Characterization of **3gb**:^{15 1}H NMR (CDCl₃, 300 MHz) δ : 1.20 (t, *J* = 7.1 Hz, 6H), 3.40 (q, *J* = 7.1 Hz, 4H), 6.75 (d, *J* = 8.8 Hz, 2H), 7.21-7.26 (m, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.55 (d, *J* = 7.1 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 12.6, 44.4, 111.9, 125.7, 126.1, 127.9, 128.1, 128.6, 141.3, 147.1. GC/MS: ^tR 20.27 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 225 (M⁺), 210 (100). H₃CO

N,N-diethyl-4'-methoxy-[1,1'-biphenyl]-4-amine (3gd):

employing General Procedure, with N,N-diethyl-4iodoaniline (**1g**) (34 mg, 0.12 mmol) as starting material

and triethoxy(4-methoxyphenyl)silane (**2d**), desired product **3gd** was isolated in 71% yield.

Characterization of **3gd**: ¹H NMR (CDCl₃, 300 MHz) δ : 1.19 (t, *J* = 7.1 Hz, 6H), 3.39 (q, *J* = 7.1 Hz, 4H), 3.83 (s, 3H), 6.74 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 12.9, 44.9, 55.5, 112.9, 115.1, 127.6, 128.0, 134.6, 159.3. HRMS (ESI) m/z 256.16933 [(M + H⁺); calcd for C₁₇H₂₂NO: 256.16959].

1-benzyl-4-(4'-methoxy-[1,1'-biphenyl]-4-yl)-3-phenoxyazetidin-2-one (3id):

employing General Procedure, with 1-benzyl-4-(4iodophenyl)-3-phenoxyazetidin-2-one (**1i**) (30 mg, 0.066 mmol) as starting material and triethoxy(4methoxyphenyl)silane (**2d**), desired product **3id** was isolated in 68% yield.

Characterization of **3id**: ¹H NMR (CDCl₃, 300 MHz) δ : 3.85 (s, 3H), 3.91 (d, *J* = 14.7 Hz, 1H), 4.79 (d, *J* = 4.2 Hz, 1H), 4.92 (d, *J* = 14.7 Hz, 1H), 5.43 (d, *J* = 4.2 Hz, 1H), 6.75 (d, *J* = 7.6 Hz, 2H), 6.87 (t, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 2H), 7.18-7.21 (m, 2H), 7.31-7.34 (m, 5H), 7.46-7.52 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ : 44.2, 55.3, 61.2, 82.2, 114.2, 115.6, 122.0, 126.4, 128.0, 128.0, 128.6, 128.9, 129.1, 129.2, 131.0, 132.9, 134.8, 141.0, 157.0, 159.3, 165.6. HRMS (ESI) m/z 458.1705 [(M + Na⁺); calcd for C₂₉H₂₅O₃Na: 458.17266].

1-benzyl-4-(4'-chloro-[1,1'-biphenyl]-4-yl)-3-phenoxyazetidin-2-one (3ie):

employing General Procedure, with 1-benzyl-4-(4iodophenyl)-3-phenoxyazetidin-2-one (1i) (30 mg, 0.066 mmol) as starting material and (4chlorophenyl)triethoxysilane (2e), desired product 3ie was isolated in 90% yield.

Characterization of **3ie**: ¹H NMR (CDCl₃, 300 MHz) δ: 3.91

(d, J = 14.7 Hz, 1H), 4.79 (d, J = 4.5 Hz, 1H), 4.91 (d, J = 14.7 Hz, 1H), 5.42 (d, J = 4.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 2H), 6.87 (t, J = 7.38 Hz, 1H), 7.09-7.14 (m, 2H), 7.18-7.20 (m, 2H), 7.32-7.41 (m, 7H), 7.46-7.49 (m, 4H). ¹³C NMR (CDCl₃, 75 MHz) δ : 44.2, 61.1, 82.2, 115.6, 122.0, 126.8, 128.0, 128.2, 128.6, 128.9, 128.9, 129.2, 132.1, 133.6, 134.7, 138.8, 140.2, 156.9, 165.5. HRMS (ESI) m/z 462.12404 [(M + Na⁺); calcd for C ₂₈H₂CINaO₂: 462.12313].

OCH33-(3-methoxyphenyl)pyridine(3ja):employingGeneralProcedure, with 3-iodopyridine (1j)(30 mg, 0.15 mmol) as startingmaterial and triethoxy(3-methoxyphenyl)silane (2a), desired product3ja was isolated in 87% yield.

Characterization of **3ja**:^{2 1}H NMR (CDCl₃, 300 MHz) δ : 3.87 (s, 3H), 6.95 (ddd, *J* = 8.3, 2.4 and 0.9 Hz, 1H), 7.10 (t, *J* = 2.4 Hz, 1H), 7.15-7.18 (m, 1H), 7.33-7.42 (m, 2H), 7.85 (dt, *J* = 7.9 and 1.6 Hz, 1H), 8.59 (dd, *J* = 4.8 and 1.6 Hz, 1H), 8.85 (d, *J* = 1.6 Hz, 1H). ¹³C NMR (CDCl₃, 75 MHz) δ : 55.3, 112.9, 113.4, 119.6, 123.5, 130.1, 134.4, 136.5, 139.3, 148.3, 148.6, 160.1. GC/MS: ^tR 17.15 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 185 (M⁺, 100).

OCH₃
2-(3-methoxyphenyl)thiophene (3ka): employing General
Procedure, with 2-iodothiophene (1k) (38 mg, 0.18 mmol) as starting
material and triethoxy(3-methoxyphenyl)silane (2a), desired product
3ka was isolated in 93% yield.

Characterization of **3ka**:^{16 1}H NMR (CDCl₃, 300 MHz) δ : 3.86 (s, 3H), 6.85 (ddd, J = 8.0, 2.4 and 0.9 Hz, 1H), 7.08 (dd, J = 5.0 and 3.6 Hz, 1H), 7.17 (ta, J = 2.1 Hz, 1H), 7.21-7.24 (m, 1H), 7.28-7.33 (m, 3H). ¹³C NMR (CDCl₃, 75 MHz) δ : 55.3, 111.6, 112.9, 118.6, 123.3, 124.9, 127.9, 129.9, 135.7, 144.2, 159.9. GC/MS: ^{*t*}R 16.55 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 190 (M⁺, 100).

2-(4-methoxycarbonylphenyl)thiophene (<u>3ag</u>): employing General Procedure, with methyl 4-iodobenzoate (**1a**) (30 mg, 0.11 mmol) as starting material and triethoxy(thiophen-2-

yl)silane (2g), desired product 3ag was isolated in 88% yield.

Characterization of **3ag**:^{17 1}H NMR (CDCl₃, 300 Hz) 3.93 (s, 3 H) 7.11 (dd, J = 5.3 and 3.8 Hz, 1H), 7.35-737 (m, 1H) 7.41-7.43 (m, 1H) 7.67 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4 Hz, 2H). ¹³C NMR (CDCl₃, 75 MHz) δ : 52.1, 124.5, 125.5, 1126.3, 128.3, 128.8, 130.3, 138.6, 143.1, 166.7. GC/MS: ^tR 18.97 min (50°C (3 min), 10 °C/min, 300°C, 49.6 kPa). *m/z* (%) 187 (100), 218 (M⁺).

2.- References

1.- A. S. Manoso, C. Ahn, A. Soheili, C. J. Handy, R. Correia, W. M. Seganish, and P. DeShong, *J. Org. Chem.*, 2004, **69**, 8305.

2.- P. Leowanawat, N. Zhang, M. Safi, D. J. Hoffman, M. C. Fryberger, A. George and V. J. Percec, *J. Org. Chem.*, 2012, **77**, 2885.

3.- V. Percec, G. M. Golding, J. Smidrkal and O. Weichold, *J. Org. Chem.*, 2004, **69**, 3447.

4.- L. Wu, B-L. Li, Y-Y. Huang, H-F. Zhou, Y-M. He and Q-H. Fan, *Org. Lett.,* 2006, **8**, 3605.

5.- H. Zaho, Y. Wang, J. Sha, S. Sheng and M. Cai, *Tetrahedron*, 2008, *64*, 7517.

6.- G. A. Molander, S. L. J. Trice and S. M. Kennedy, *J. Org. Chem.*, 2012, **77**, 8678.

7.- G. A. Molander and L. lannazzo, J. Org. Chem., 2011, 76, 9182.

8.- C. A. Parrish and S. L. Buchwald, J. Org. Chem., 2001, 66, 3820.

9.- K. Manabe, M. Ohba and Y. Matsushima, Org. Lett., 2011, 13, 2436.

10.- S. Santra, P. Q. Hota, R. Bhattacharyya, P. Bera, P. Ghosh and S. K. Mandal, ACS Catal., 2013, **3**, 2776.

11.- A. Catalano, A. Carocci, A. Di Mola, C. Bruno, P. M. L. Vanderheyden and C. Franchini, *Arch. Pharm. Chem. Life Sci.*, 2011, **344**, 617.

12.- V. Papoian and T. Minehan, J. Org. Chem., 2008, 73, 7376.

13.- M. Marco Mor, S. Rivara, A. Lodola, P. V. Plazzi, G. Tarzia, A. Duranti, A. Tontini, P. Giovanni, S. Kathuria and D. Piomelli, *J. Med. Chem.*, 2004, **47**, 4998.

14.- W-M. Dai, Y. Li, Y. Zhang, C. Yue and J. Wu, *Chem. Eur. J.*, 2008, **14**, 5538.

15.- H. Jasch, S. B. Hoefling and M. R. Heinrich, *J. Org. Chem.*, 2012, **77**, 1520.

16.- A. Gavryushin, C. Kofink, G. Manolikakes and P. Knochel, *Org. Lett.*, 2005, **7**, 4871.

17.- P. Leowanawat, N. Zhang, A-M. Resmerita, B. M. Rosen and V. Percec, *J. Org. Chem.*, 2011, **76**, 9946.

3.- ¹H NMR and ¹³C NMR Spectra

