Supporting Information

Base-promoted [1,4]-Wittig Rearrangement of Chalcone-derived Allylic Ethers Leading to Aromatic $\boldsymbol{\beta}$-Benzyl Ketones

Pei-Sen Gao ${ }^{\text {a,b }}$, Fei Ye ${ }^{\text {b }}$, Xiao-Yun Dong ${ }^{\text {a }}$, Yun Chen ${ }^{\text {a }}$, Zi-Wei Gao* ${ }^{\text {a }}$, Wei-Qiang Zhang ${ }^{\text {a }}$, Li-Wen $X u^{* a, b}$

${ }^{a}$ Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education (MOE) and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China. Fax: (+86)-571-28867756; E-mail: licpxulw@yahoo.com
${ }^{\bar{b}}$ Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, P. R. China. Fax: 862886 5135; Tel: 862886 5135; E-mail: liwenxu@hznu.edu.cn

Table of Contents

1 General Information S1
2 General Procedure for Synthesis of α, β-Unsaturated Ketones S1
3 General Procedure for Synthesis of allylic alcohols S3-S4
4 General Procedure for Synthesis of (E)-1, 3-diphenylallyl acetate S4
5 General procedure for the Pd-catalyzed allylic etherification of (E)- 1,3-di-phenylallylic acetate with benzyl alcohol S4-S5
6 Typical Procedure for synthesis of 1,3,4-triphenylbutan-1-one. S6
7 Charcter of the representative substrates 1 and products 2 S6-S10
Figure S1. No reaction when the addition of TEMPO to lithium-promoted [1,4]-Wittig
rearrangement S11
$8{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}-\mathrm{NMR}$ of the products 2 and representative substrates S12-S25
9 HR-MS of Representative products: 2 b and 2 c S26
10 HPLC Charts of enantioselective [1,4]-Wittig rearrangement S27

1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ (400 and 100 MHz , respectively) spectra were recorded in $\mathrm{CDCl}_{3},{ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.26 ppm$) .{ }^{13} \mathrm{CNMR}$ chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard).

2. General Procedure for Synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Ketones

To a solution of $\mathrm{NaOH}\left(2.2 \mathrm{~g}, 55 \mathrm{mmol}, 1.3\right.$ equiv) in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and phenyl ketone ($43 \mathrm{mmol}, 1.0$ equiv) in 12 mL ethanol at $0^{\circ} \mathrm{C}$ was added gradually phenyl aldehyde ($43 \mathrm{mmol}, 1.0$ equiv). The mixture was then allowed to warm to room temperature and stirred for 4 h after which a precipitate of the product formed. The product was collected by suction filtration on a Buchner funnel and washed repeatedly with cold water. Recrystallization from ethanol afforded α, β-unsaturated ketones $\mathrm{S}-1 \mathrm{a}$ and $\mathrm{S}-1 \mathrm{~b}$.

126.44, 126.32, 126.27, 119.89 .

$S-1 b$
(E)-1,3-di-p-tolylprop-2-en-1-one: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.59-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.07$, $144.48,143.50,140.94,135.80,132.30,129.71,129.32,128.65,128.47,121.10$, 21.68, 21.54.

3. General Procedure for Synthesis of allylic alcohols

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of α, β-Unsaturated Ketones $1 \mathrm{a}(9.5 \mathrm{~g}, 45.9 \mathrm{mmol}) / \mathrm{bb}$ $(10.9 \mathrm{~g}, 45.9 \mathrm{mmol})$ in methanol, sodium borohydride ($3.5 \mathrm{~g}, 91.4 \mathrm{mmol}$, 2equiv.) was added portion wise at $0^{\circ} \mathrm{C}$, and stirred for about 6 h hour until $1 \mathrm{a} / 1 \mathrm{~b}$ was completely consumed. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with DCM. The combined extracts were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo.S-1a. White solid, Yield: 94\%. S-2a. White solid, Yield: 91%.

S-2a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.33$ (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.28
(d, J = 7.4 Hz, 4H), $7.25(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{dd}, \mathrm{J}=9.3$, $5.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{~s}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.85,136.59,131.61,130.58,128.66$, 128.61, 127.82, 126.67, 75.29.

S-2b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.23$ (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.19 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.09(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, \mathrm{J}=$ $15.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$,

```
2.27 (s, 3H). ' }\mp@subsup{}{}{13}\textrm{C NMR (100 MHz, CDCl}3) \delta 140.29, 137.56, 137.35, 134.08, 131.01
130.31, 129.39, 126.71, 126.54, 75.01, 21.35, 21.29.
```


4. General Procedure for Synthesis of (E)-1, 3-diphenylallyl acetate

DMAP ($5.8 \mathrm{mg}, 0.048 \mathrm{mmol}$) was added to a 3 mL DCM solution of $1 \mathrm{a}(100 \mathrm{mg}, 0.48$ mmol), $\mathrm{Et}_{3} \mathrm{~N}$ ($1 \mathrm{~mL}, 1.2 \mathrm{mmol}$), and acetic anhydride ($1 \mathrm{~mL}, 1.2 \mathrm{mmol}$). The reaction mixture was stirred at room temperature until B had disappeared as monitored by TLC. Ethyl acetate (30 mL) was added and the mixture was washed with water $(3 \times$ 30 mL). The organic layer was dried over MgSO_{4}, filtered, concentrated, and purified by column chromatography on silica gel with ethyl acetate and petroleum ($\mathrm{v} / \mathrm{v}=1: 5$) as eluent to give S-3a as colourless oil ($110 \mathrm{mg}, 91 \%$).

S-3a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.34(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, J = 7.1 Hz, 4H), 7.24 (dd, J = 13.3, 6.9 Hz, 3H), 7.17 (d, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.07,139.24,136.17,132.60,128.65$, $128.59,128.20,128.08,127.50,127.06,126.71,76.16,21.18$.

5. General procedure for the Pd-catalyzed allylic etherification of (E)-

1,3-di-phenylallyl acetate 3 with benzyl alcohol

A solution of $\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}(0.0019 \mathrm{~g}, 0.005 \mathrm{mmol})\right.$ and phosphine ligand (0.01 mmol) was stirred for 30 min . (E)-1,3-diphenylallyl acetate ($0.05 \mathrm{ml}, 0.25 \mathrm{mmol}$) was added and the solution stirred for 15 min , then benzyl alcohol $(0.08 \mathrm{ml}, 0.75$ $\mathrm{mmol})$ and anhydrous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.245 \mathrm{~g}, 0.75 \mathrm{mmol})$ were added and the reaction mixture stirred overnight. The resulting solution was quenched with EtOAc (1.5 ml) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (3 ml). The mixture was then extracted with EtOAc ($2 \times 2 \mathrm{ml}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated at reduced pressure, the
residue was purified by flash chromatography on a short pad of silica gel (10 cm , EtOAc/ Petroleum ether 1/10) and dried in vacuum for 2 h gave the desired product 3a as colerless oil. Yield: 78\%.

Table S1. Optimization for Pd-catalyzed allylic etherification of (E)-1,3-di-phenylallyl acetate (3) with benzyl alcohol

S-3a
$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) 2 \mathrm{PdCl}\right]_{2} 2 \mathrm{~mol} \%$ $\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O} 4 \mathrm{~mol} \%$ BzOH 3equiv

DCM, r.t. 12h

1

Entry	Catalyst	Ligand	Base	Solvent	Yield ${ }^{\text {iso }}(\%)$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	PPh_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	DCM	51
2	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	PPh_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	DCM	62
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	PPh_{3}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	DCM	51
4	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DCM	53
5	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCM	78
6	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$	DCM	55
7	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	DPPE_{2}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCM	68
8	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	BINAP^{2}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCM	61
9	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DCM	33
10	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}\right]_{2}$	$\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	70
11	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	62
12	$\left[\left(\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{PdCl}_{2}\right.$	$\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	Toluene	55

6. Typical Procedure for synthesis of 1,3,4-triphenylbutan-1-one (2a)

To a solution of allylic ether $\mathbf{1 a}(0.5 \mathrm{mmol}$,$) in 4 \mathrm{~mL}$ of THF, $0.24 \mathrm{~mL}(0.6 \mathrm{mmol})$ of a solution of n - BuLi in hexane was dropwise added at $-78^{\circ} \mathrm{C}$. The resulting solution was further stirred at $-40^{\circ} \mathrm{C}$. After completion of the reaction, the resulting solution was quenched with a piece of ice and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL). The mixture was then extracted with DCM (3 x 8 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated at reduced pressure and the desired compound 1,3,4-triphenylbutan-1-one 2a was obtained in 80% yield (0.135 g) after column purification using PE/EA (20:1) as solvent.

7. Charcter of the representative substrates 1 and product 2

1a
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (s, 2H), 7.26 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 ($\mathrm{s}, 2 \mathrm{H}$), 7.19 (s, 2H), 7.14 (d, J = 7.2 Hz, 1H), 6.54 (d, J = $15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.26 (dd, J $=15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.19,138.47,136.63,131.61$, $130.32,128.60,128.45,127.78,127.60,127.04,126.67,81.65$, 70.16.

1b
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}=15.9$, $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.31,137.28,136.71$, 135.43, 131.53, 130.47, 129.15, 128.59, 127.93, 127.74, 127.08, 126.68, 81.42, 70.04, 21.26.

1c
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}$, $\mathrm{J}=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=14.2,7.5 \mathrm{~Hz}, 5 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{dd}, \mathrm{J}=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $159.34,141.43,136.79,131.58,130.64,130.60,129.49$, $128.68,127.86,127.83,127.17,126.76,113.97,81.43,69.94,55.34$.

1d

1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ (t, J = 7.1 Hz, 4H), $7.49(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=15.9$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, \mathrm{J}=25.3,10.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 6 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl3) $\delta 141.65,138.16,137.74,136.93,131.62,131.39$, $130.88,129.18,128.75,128.69,127.86,127.27,126.79,82.40,65.19,21.24,19.82$.

1 e
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, J = 7.2 Hz, 4H), 7.33 (s, 1H), $7.28(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 5 \mathrm{H}), 7.20$ (dd, J = 15.7, 8.2 Hz, 1H), 7.11 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $6.63(\mathrm{~d}, \mathrm{~J}$ $=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, \mathrm{J}=15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.49,141.07,140.89,136.52,131.92,129.98,129.82$,
128.72, 128.66, 127.98, 127.95, 127.03, 126.72, 125.80, 82.18, 69.36.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}$, 1H), 7.17 (d, J = 7.4 Hz, 2H), 6.95 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79 (d, $\mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{dd}, \mathrm{J}=15.9$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{q}, \mathrm{J}=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.16,141.64,136.90,131.48$, $130.80,128.81,128.68,128.63,128.60,127.82,127.76,127.15,126.79,120.62$, 110.28, 82.25, 65.50, 55.36.

1 g
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (d, J = 7.9 Hz, 2H), $7.43(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=3.2$ Hz, 4H), 7.29 (t, J = 6.7 Hz, 3H), $7.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{dd}, \mathrm{J}=15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ $(\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 142.69,140.85,136.47,131.91,129.94,128.71$, $128.65,127.98,127.66,126.98,126.70,125.41,82.25,69.41$.

1h
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.70(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $\mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dd}, \mathrm{J}=15.8,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.74(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.41 (m, 7H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $143.14,138.26,137.89,137.77,134.01,131.82,129.56,129.53,129.33,127.79$, 127.17, 126.82, 125.46, 82.43, 69.42, 21.33.

2a

1,3,4-triphenylbutan-1-one (2a): white solid, $135.1 \mathrm{mg}, 80 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.05(\mathrm{~m}$, 4H), 6.99 ($\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.59 ($\mathrm{p}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (qd, J = 16.8, 6.9 Hz, 2H), 2.97-2.83 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.90$, 144.14, 139.84, 137.22, 132.94, 129.30, 128.53, 128.38, 128.20, 128.02, 127.69, 126.42, 126.12, 44.17, 43.05, 43.01.

2b

1,3-diphenyl-4-(p-tolyl)butan-1-one (2b): white solid. $119.2 \mathrm{mg}, 76 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90$ (d, $\mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, 2H), 7.29 (d, J = 7.2 Hz, 2H), 7.25 (d, J = 7.7 Hz, 3H), 7.08 $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.28(\mathrm{~m}, 2 \mathrm{H})$, $3.00(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.98, 144.31, $137.25,136.71,135.55,132.90,129.18,128.92,128.51,128.37,128.02,127.70$, 126.38, 44.14, 43.08, 42.58, 21.04. HR-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}, 337.1568$, Found 337.1563.

2c

4-(4-methoxyphenyl)-1,3-diphenylbutan-1-one (2c): white solid. 63% yield. 104.1 mg . ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $0 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{dd}, \mathrm{J}=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.74 (d, J = 7.5 Hz, 1H), 3.74 (s, 3H), 3.62 (p, J = 7.2 Hz, 1H), 3.35-3.21 (m, 2H), 2.99-2.84 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.99, 157.97, 144.24, 137.24, 132.91, 131.88, 130.22, 128.52, 128.36, 128.01, 127.71, 126.37, 113.60, 55.19, 44.09, 43.95, 42.11. HR-MS calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 353.1517$, Found 353.1500.

4-mesityl-1,3-diphenylbutan-1-one (2d) : white solid, $111.2 \mathrm{mg}, 65 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}$, $\mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}$, 1 H), 3.82-3.71 (m, 1H), $3.61(\mathrm{dd}, \mathrm{J}=16.1,8.3 \mathrm{~Hz}, 1 \mathrm{H})$,
3.41 (dd, J = 16.1, 5.5 Hz, 1H), 3.17 (dd, J = 13.6, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, J = 13.7, 7.3 $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100MHz, CDCl_{3}) δ 196.70, 142.33, 134.93, 134.62, 133.13, 131.35, 130.65, 126.88, 126.28, 126.13, 125.79, 125.32, 124.22, 41.20, 39.22, 34.75, 18.62, 18.02.

2e

1,3-diphenyl-4-(3-(trifluoromethoxy)phenyl)butan-1-one (2e) : yellow oil. $117.2 \mathrm{mg} .62 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=13.3,7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 0 \mathrm{H}), 3.70-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.38-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{J}=13.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ $(\mathrm{dd}, \mathrm{J}=13.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.57, 149.14, 143.49, $142.35,137.18,133.13,129.48,128.65,128.54,128.05,127.82,127.73,126.71$, 44.24, 42.96, 42.61.

$2 f$

1,3,4-tri-p-tolylbutan-1-one: white solid. 116.4 mg , 68% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 1 \mathrm{H})$, 6.94-6.86(m, 1H), $3.52(\mathrm{p}, \mathrm{J}=7.1 \mathrm{~Hz}, 0 \mathrm{H}), 3.15(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.19$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.73, 143.60, 141.23, 136.92, 135.72, $135.45,134.82,129.18,129.06,128.89,128.19,127.53,44.16,42.72,42.62,21.62$, 21.05.

Figure S1. No reaction when the addition of TEMPO to lithium-promoted [1,4]-Wittig rearrangement
8. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$-NMR of the products $\mathbf{2}$ and representative substrates

2．${ }^{1} \mathbf{H} /{ }^{13} \mathbf{C}$－NMR of the products $\mathbf{1}$ and representative substrates

1a

ぶ ふै
$\stackrel{\mathrm{F}}{7}$

1c 11^{\square} 11

-81.43
-69.94
-55.34

1c

1d

时：サー

1d
-82.40
-65.19
団が
－

$$
-\infty
$$

1f

9. HR-MS of Representative products: 2b and 2c

10 HPLC Charts of enantioselective [1,4]-Wittig rearrangement

HPLC conditions: chiralcel AD-H, n-hexane $/ 2$-propanol $=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$

