Supplementary Information

The deduction of formula (3) is as follows:
According to ideal gas equation

$$
P_{\mathrm{g}} M=\rho R T
$$

and considering the gas pressure and the composition proportion in the bubble changed with the CO_{2} diffusion, resulting in the change of the mixed gas density.
$\frac{d \rho}{d t}=\frac{M}{R T} \frac{d P_{\mathrm{g}}}{d t}+\frac{P_{g}}{R T} \frac{d M}{d t}$
where P_{g} is the pressure in the bubble, according to Young-Laplace equation, written as

$$
P_{g}=P_{l}+\frac{2 \sigma}{R_{b}}
$$

M is the molecular weight of mixed gas, given by

$$
M=x_{\mathrm{CO}_{2}} M_{\mathrm{CO}_{2}}+x_{\mathrm{Air}} M_{\mathrm{Air}}
$$

Combining Equations (2, (3 and (4 yields the resulting expression,

$$
\begin{align*}
\frac{d \rho}{d t} & =-\frac{2 \sigma M}{R T R_{b}{ }^{2}} \frac{d R_{b}}{d t}+\frac{P_{\mathrm{g}}}{R T}\left(M_{C O_{2}} \frac{d x_{C O_{2}}}{d t}+M_{\text {Air }} \frac{d x_{\text {Air }}}{d t}\right) \\
& =-\frac{2 \sigma M}{R T R_{b}^{2}}{ }^{2} \frac{d R_{b}}{d t}+\frac{P_{\mathrm{g}}}{R T}\left(M_{C O_{2}}-M_{A i r} \frac{d x_{C O_{2}}}{d t}\right. \\
& =-\frac{2 \sigma M}{R T R_{b}{ }^{2}} \frac{d R_{b}}{d t}+x_{A i r}\left(M_{C O_{2}}-M_{A i r}\left(\frac{4 \pi R_{b}{ }^{2} P_{l}}{R T}+\frac{16 \pi \sigma R_{b}}{3 R T}\right) \frac{d R_{b}}{d t}\right. \\
& =\left[-\frac{2 \sigma M}{R T R_{b}{ }^{2}}+\left(M_{C O_{2}}-M\right)\left(\frac{3 P_{l}}{R T R_{b}}+\frac{4 \sigma}{R T R_{b}{ }^{2}}\right)\right] \frac{d R_{b}}{d t}
\end{align*}
$$

The change rate of gas mass in the bubble can be calculated as:

$$
\begin{aligned}
& \frac{d m}{d t}=\frac{d\left(\frac{4}{3} \pi R_{b}^{3} \rho\right)}{d t}=4 \pi R_{b}^{2} \rho \frac{d R_{b}}{d t}+\frac{4}{3} \pi R_{b}^{3} \frac{d \rho}{d t} \\
& =4 \pi R_{b}^{2} \rho \frac{d R_{b}}{d t}+\frac{4}{3} \pi R_{b}^{3}\left[-\frac{2 \sigma M}{R T R_{b}{ }^{2}}+\left(M_{C O_{2}}-M\right)\left(\frac{3 P_{l}}{R T R_{b}}+\frac{4 \sigma}{R T R_{b}{ }^{2}}\right)\right] \frac{d R_{b}}{d t} \\
& =\left[4 \pi R_{b}{ }^{2} \rho-\frac{8 \pi \sigma M R_{b}}{3 R T}+\left(M_{C O_{2}}-M\right)\left(\frac{4 \pi R_{b}{ }^{2} P_{l}}{R T}+\frac{16 \pi \sigma R_{b}}{3 R T}\right)\right] \frac{d R_{b}}{d t}
\end{aligned}
$$

$=\left\{\rho-\left[\frac{2 \sigma}{R_{b}}-\left(\frac{M_{C O_{2}}}{M}-1\right) P_{l}+\frac{M_{C O_{2}}}{M} \cdot \frac{4 \sigma}{3 R_{b}}\right] \frac{M}{R T}\right\} 4 \pi R_{b}{ }^{2} \frac{d R_{b}}{d t}$
Considering the change rate of gas mass in the bubble is equal to the CO_{2} diffusion rate through the gas-liquid interface

$$
\frac{d m}{d t}=-4 \pi R_{b}^{2} j_{R_{b}}
$$

where ${ }^{j_{R_{b}}}$ is the CO_{2} diffusion flux through the gas-liquid interface, which can be obtained by applying Fick's first law in the microalgae suspension as
$j_{R_{b}}=-\left.M_{C O_{2}} D_{C O_{2}} \frac{\partial C}{\partial r}\right|_{r=R_{t}}$
Combining formula (6, (7 and (8 , the decreasing rate of the bubble radius can be obtained by

$$
\frac{d R_{b}}{d t}=\left.\left\{\rho-\left[\frac{2 \sigma}{R_{b}}-\left(\frac{M_{C O_{2}}}{M}-1\right) P_{l}+\frac{M_{C O_{2}}}{M} \cdot \frac{4 \sigma}{3 R_{b}}\right] \frac{M}{R T}\right\}^{-1} M_{C O_{2}} D_{C O_{2}} \frac{\partial C}{\partial r}\right|_{r=R_{b}}
$$

