Supporting Information

Unexpected Surface Superparamagnetism in Antiferromagnetic

Cr₂O₃ Nanoparticles

Zhaolong Yang,^a Jing Zhang,^a Daqiang Gao,^a Zhonghua Zhu,^b Guijin Yang,^c and

Desheng Xue*a

^a Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou 730000, P. R. China.

^b Hunan University of Science and Technology, Xiangtan 411201, P. R. China.

^c College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

* To whom correspondence should be addressed.

E-mail: <u>xueds@lzu.edu.cn</u>

Fig. S1 (a) XRD pattern of $CrCl_3 \cdot 6H_2O$ precursor (JCPDS No. 71-2121). (b) TG-DTA curves of $CrCl_3 \cdot 6H_2O$ precursor which were performed in the air under a heating rate of 10 °C/min.

Fig. S2 (a) *M*-*H* curve of CrCl₃·6H₂O precursor and the fitted AF signal ($\chi_{AF}*H$). (b) The signal after subtracting AF contribution from the raw *M*-*H* curve.

For clarity, the raw signals and AF magnetization ($\chi_{AF}*H$) are shown in Fig. S3. The SPM signals were described by the equation $M(H) = M_{SPM}(H) + \chi_{AF}*H^{.1, 2}$ The AF susceptibility (χ_{AF}) was obtained by linear fitting the M(H) curve in high field. However, in our sample, the χ_{AF} increases obviously in high field (> 2 T), which is attributed to the occurrence of SF and the moments in AF core reverse from parallel to perpendicular to the applied field. In that case, the χ_{AF} cannot be approximated as a constant. So we fitted the slope using the data before SF transition (< 2 T) and after the saturation of S-shape SPM signal (> 0.5 T).

The nonlinear M(H) curves originate from two reasons: 1. S-shape SPM signal in lower field is attributed to the presence of Cr⁴⁺ in particle surface, and this could exist above T_N of Cr₂O₃; 2. another nonlinear signal in higher field (> 2 T) is due to the SF transition of AF core and only present below T_N .

Fig. S3 *M-H* curves of Cr₂O₃ nanoparticles and the fitted AF signals ($\chi_{AF}*H$) at (a) 20 K, (c) 170 K, (e) 250 K, and (g) 300 K. The insets show the *M-H* curves in lower field. The SPM and SF signals after subtracting AF contributions from the *M-H* curves are shown in (b) 20 K, (d) 170 K, (f) 250 K, and (h) 300 K.

Fig. S4 Field dependence of ZFC curves measured from 2 to 330 K at 5, 100, 500, 1000, 1500, and 2000 Oe.

Fig. S5 *M-H* curves of Cr_2O_3 (black line) and Cr_2O_3 - O_2 (red line) nanoparticles measured at 300 K (after subtracting AF signals)

- 1. S. A. Makhlouf, H. Al-Attar and R. H. Kodama, Solid State Commun., 2008, 145, 1-4.
- 2. S. Mandal, S. Banerjee and K. S. R. Menon, Phys. Rev. B, 2009, 80, 214420.