Supplementary Information

Fluorescent biosensor for sensitive analysis of oxytetracycline based on an indirectly labeled long-chain aptamer

Fang Yuan, Huimin Zhao*, Zhinan Zhang, Lichen Gao, Jintao Xu, Xie Quan

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education,

China), School of Environmental Science and Technology, Dalian University of Technology,

Linggong Road 2, Dalian 116024, P. R. China

*Corresponding author

*e-mail: zhaohuim@dlut.edu.cn

Tel. 86-411-84706263

Fax. 86-411-84706263

5'-CGTACGGAATTCGCTAGCCGAGTTGAGCCGGGCGCGGGTACGGGTACTGGTATGTGTGGGGATCCGAGCTCCACGTG-3' |||||||||||| 3'-FAM-GCATGCCT TAA-5'

Fig. S1 Aptamer-based recognition probe which consisted of two parts, oxytetracycline long-chain aptamer and FAM-labeled short-chain ssDNA.

Fig. S2. TEM image of graphene.

Fig. S3. FT-IR spectra of graphene oxide and graphene.

Sequence (5'-3')	Size	T _M (°C)
CCGTACG	7 mer	19.9
TTCCGTACG	9 mer	27.8
AATTCCGTACG	11 mer	33.6
CGAATTCCGTACG	13 mer	41.9
AGCGAATTCCGTACG	15 mer	48.6

Table S1. Sequence details of tested S1.

Method	Read-out	Analytical ranges	LOQ	Homogeneous	Immobilization	Ref
Aptamer-based light scattering	Photon count	10 ² -10 ⁴ ppb	100 ppb	No	Yes	1
agglutination assay						
Aptamer-based cantilever array	Differential	1.0-100 nM	1.0 nM	No	Yes	2
sensor	deflection					
Electrochemiluminescence sensor	ECL intensity	1-100 μM	1 µM	No	Yes	3
based on silica/Nafion-modified						
electrode						
Electrochemical sensor based on	Electric	1-100 nM	1 nM	No	Yes	4
aptamer-immobilized array	current					
electrode chip						
Colorimetric sensor based on	Absorbance	0.42-16 μg/mL	0.42	Yes	No	5
growth of AuNPs			µg/mL			
Colorimetric aptamer-based sensor	Absorbance	0.025-1 μM	0.025µM	Yes	No	6
using AuNPs						
Fluorescent sensor based on carbon	Fluorescence	0.06-6 μM	0.06 µM	Yes	No	7
nanoparticles	intensity					
Fluorescent assay based on	Fluorescence	0.1-2 μM	0.1 µM	Yes	No	8
interaction between aptamer and	intensity					
graphene						
Our assay	Fluorescence	0.01-0.2 µM	0.01 µM	Yes	No	
	intensity					

Table S2. Comparison of available detection methods for oxytetracycline analysis.

Reference

- 1 K. Kim, M. B. Gu, D. H. Kang, J. W. Park, I. H. Song, H. S. Jung and K. Y. Suh, *Electrophoresis*, 2010, **31**, 3115.
- 2 H. Hou, X. J. Bai, C. Y. Xing, N. Y. Gu, B. L. Zhang and J. L. Tang, *Anal. Chem.*, 2013, **85**, 2010.
- 3 X. M. Chen, L. M. Zhao, X. T. Tian, S. Lian, Z. Y. Huang and X. Chen, *Talanta*, 2014, **129**, 26.
- 4 Y. S. Kim, J. H. Niazi and M. B. Gu, Anal. Chim. Acta, 2009, 634, 250.
- 5 L. Shen, J. Chen, N. Li, P. L. He and Z. Li, Anal. Chim. Acta, 2014, 839, 83.
- 6 Y. S. Kim, J. H. Kim, I. A. Kim, S. J. Lee, J. Jurng and M. B. Gu, Biosens.

Bioelectron., 2010, 26, 1644.

- 7 X. M. Yang, Y. W. Luo, S. S. Zhu, Y. J. Feng, Y. Zhuo and Y. Dou, *Biosens*. *Bioelectron.*, 2014, **56**, 6.
- 8 H. M. Zhao, S. Gao, M. Liu, Y. Y. Chang, X. F. Fan and X. Quan, *Microchim. Acta*, 2013, **180**, 829.

Fig. S4. Fluorescence quenching based on three batches of graphene. Experiments were carried out in 20.0 mM PBS (pH 7.4) containing 0.66 μ M aptamer-based recognition probe and different concentration of graphene.

Fig. S5. Fluorescence intensity in actual samples. Experiments were carried out in 20.0 mM PBS (pH 7.4) containing 0.66 μ M aptamer-based recognition probe, 0.036 mg mL⁻¹ graphene and 1.1 μ M C1.