Supporting Information

Room-temperature Phosphorescence by Mn-Doped ZnS Quantum Dots

Hybrid with Fenton System for Selective Detection of Fe²⁺

Qing Jin, Yueli Hu, Yuxiu Sun, Yan Li*, Jianzhong Huo, Xiaojun Zhao

Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China

* E-mail: nkliyan398@gmail.com

Fig. S1 The line relationship pattern of the concentration-dependent phosphorescence intensity of MPA-Mn:ZnS QDs. The measurement was carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Fig. S2 (A) Phosphorescence spectra of MPA-Mn:ZnS QDs (3 mg L⁻¹): (a) in the absence of Fe³⁺ and H₂O₂; (b) 10 min after addition of 0.1 μ M Fe³⁺; (c) 10 min after addition of 0.5 μ M H₂O₂; (d) 10 min after addition of 0.1 μ M Fe³⁺ and 0.5 μ M H₂O₂. All measurements were carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Fig. S3 Time course of the phosphorescence intensity of MPA-Mn:ZnS QDs (3mg L⁻¹) in Tris-HCl buffer solution (pH 7.4, 10 mM) without Fe²⁺ and Fe³⁺,and in the presence of Fe²⁺ (1 μ M) or Fe³⁺ (1 μ M).

Fig. S4 Time course of the phosphorescence intensity of TGA-Mn:ZnS QDs (3mg L⁻¹) in Tris-HCl buffer solution (pH 7.4, 10 mM) without Fe²⁺ and Fe³⁺,and in the presence of Fe²⁺ (1 μ M) or Fe³⁺ (1 μ M).

Fig. S5 The response of phosphorescence of MPA-Mn:ZnS QDs (3 mg L⁻¹) with the addition of various other metal ions, including K⁺, Na⁺, Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Ni²⁺, Mn²⁺, Co²⁺, Fe³⁺,Cu²⁺, Fe²⁺, Hg²⁺ and Cr³⁺ in the presence of 0.5 μ M H₂O₂. Herein, the concentrations of K⁺ and Na⁺ were 1 mM. The concentrations of Ca²⁺, Mg²⁺ were 400 μ M. The concentration of Al³⁺ was 5 μ M. The concentrations of Fe³⁺ and Zn²⁺ were 1 μ M. The concentration of Co²⁺ was 0.1 μ M. The concentrations of Ni²⁺ , Hg²⁺ and Cr³⁺ were 0.05 μ M. All measurements were carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Fig. S6 (a) Phosphorescence spectra of MPA-Mn:ZnS QDs (3 mg L⁻¹) in the absence of Fe²⁺ and H₂O₂; (b) Fenton system was firstly mixed with Vc and then QDs was added into the above mixed solution; (c) Fenton system was firstly mixed with QDs and then Vc was added into the above mixed solution; (d) Fenton system mixed directly with QDs solution without Vc. Fenton system: (0.1 μ M Fe²⁺ and 0.5 μ M H₂O₂) and Vc: 0.5 μ M. All measurements were carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Fig. S7 The zeta potential of •OH and MPA-Mn:ZnS QDs (3 mg L⁻¹). The measurement was carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Fig. S8 XPS spectra of S 2p for MPA-Mn:ZnS QDs in the absence (curve a) and presence (curve b) of Fe²⁺ (5 μ M) and H₂O₂ (25 μ M). All measurements were carried out in Tris-HCl buffer solution (pH 7.4, 10 mM).

Element	Concentration(g g ⁻¹)	Concentration(µM)
K	2.3×10 ⁻⁶	58.8
Na	6.3×10 ⁻⁶	273.9
Ca	1.5×10 ⁻⁵	374.2
Mg	4.1×10 ⁻⁶	168.7
Al	5.0×10 ⁻⁸	1.85
Zn	2.0×10 ⁻⁸	0.306
Ni	3.0×10 ⁻¹⁰	5.1×10 ⁻³
Mn	7.0×10 ⁻⁹	0.127
Со	1.0×10 ⁻¹⁰	1.7×10-3
Fe	4.0×10 ⁻⁸	0.716
Cu	7.0×10 ⁻⁹	0.11

Table S1 Average Abundance of Common Metal ions in River Water Matix^a

a: data from "Taylor, S. R.; McLennan, S. M. *The continental crust: its composition and evolution;* Blackwell Scientific Publications: New York,1999, pp 15-16."

ICP-MS instrument	Thermo Elemental X Series ICP-MS
Plasma RF power/ W	1280
Plasma gsa flow rate/L min-1	13
Auxiliary gas flow rate/L min-1	0.90
Nebulizer gas flow rate /L min ⁻¹	0.92
He flow rate/mL min ⁻¹	5.26
Sampler(Ni)/mm	1.14
Skimmer(Ni)/mm	0.89
Sampling depth/step	100
Resolution	Normal
Isotope monitored	Fe ⁵⁶

Table S2 ICP-MS instrumental parameters