Self-standing carbon nanotube forest electrodes for flexible supercapacitors

Jayesh Cherusseri^a and Kamal K. Kar^{a,b*}

^aAdvanced Nanoengineering Materials Laboratory, Materials Science Programme, Indian

Institute of Technology, Kanpur, Uttar Pradesh-208016, India.

^b Advanced Nanoengineering Materials Laboratory Department of Mechanical Engineering,

Indian Institute of Technology, Kanpur, Uttar Pradesh-208016, India.

*Corresponding Author. Tel: +91-512-2597687, E-mail: kamalkk@iitk.ac.in (Kamal K. Kar)

Electronic Supplementary Information

List of Contents

Supplementary Tables:

Table S1. Details of various chemicals used in the electroless coating bath.

Table S2. Comparison of electrochemical performance of CNT-based supercapacitors.

Supplementary Methods:

Method S1. Calculation of ionic conductivity of VACNTF/UCF electrodes.

Method S2. Calculation of capacitance of VACNTF/UCF supercapacitor.

Method S3. Calculation of areal capacitance of VACNTF/UCF supercapacitor.

Method S4. Calculation of volumetric capacitance of VACNTF/UCF supercapacitor.

Method S5. Calculation of volume specific capacitance of VACNTF/UCF supercapacitor

Method S6. Calculation of volume specific energy density of VACNTF/UCF supercapacitor.

Method S7. Calculation of volume specific power density of VACNTF/UCF supercapacitor.

Method S8. Calculation of mass specific capacitance of VACNTF/UCF supercapacitor.

Supplementary Figures:

Figure S1. Testing of VACNTF/UCF supercapacitor in a two electrode cell at a bending angle of 90 °.

Figure S2. XRD spectra of (a) nickel coated UCFs and (b) as-received UCFs.

Figure S3. EDAX spectra of nickel coated UCFs.

Figure S4. Digital images of VACNTF/UCF supercapacitor cell bend at different angles (a) straight (i.e., 180 °), (b) 150 °, (c) 45 °, (d) 20 °, and (e) 0 °.

Figure S5. CV curves of VACNTF/UCF supercapacitor at various bending angles (scan rate: 300 mV s⁻¹).

Figure S6. Plot of variation in the mass specific capacitance of VACNTF/UCF supercapacitor at various bending angles.

Figure S7. Plot of percentage retention in the volumetric capacitance of VACNTF/UCF supercapacitor at various bending angles.

Figure S8. Plot of percentage retention in the volumetric energy density and volumetric power density of VACNTF/UCF supercapacitor at various bending angles.

Figure S9. Plot of percentage retention in the volume specific capacitance of VACNTF/UCF supercapacitor at various cycle numbers.

Figure S10. Plot of variations in the areal capacitance of VACNTF/UCF supercapacitor at various cycle numbers.

Chemicals	Concentration (g/l)	Function
Nickel sulphate hexahydrate (NiSO ₄ .6H ₂ O)	30	Source of Ni
Sodium hypophosphite (NaH ₂ PO ₂ .H ₂ O)	12	Reducing agent
Ammonium chloride (NH ₄ Cl)	45	Complexing agent
Tri-sodium citrate (Na ₃ C ₆ H ₅ O ₇ .2H ₂ O)	25	Stabilizer
Liquor ammonia	2.5	pH controller

Table S1. Details of various chemicals used in the electroless coating bath.

Table S2. Comparison of electrochemical performance of CNT-based supercapacitors.

Ref.	Electrode Material/s	Electrolyte	Cm (F/g)
[82]	SWNTs	1 M NaCl (aqueous)	25-30
	MWNTs	1 M NaCl (aqueous)	6-10
[S3]	MWNTs	1 M LiPF ₆ (EC-DEC)	35
[S4]	Normal CNTs	1 M LiClO ₄ (EC-DEC)	25
	Activated CNTs	1 M LiClO ₄ (EC-DEC)	50
[S5]	CO ₂ oxidized CNTs		47
[S6]	MWNTs	6 N KOH	21
[S7]	MWNTs	1 M H ₂ SO ₄	25.4
[S8]	SWNTs	6 M KOH	40
[S9]	Pristine CNTs	Aprotic electrolyte	12.9
	Pristine CNTs	Protic electrolyte	10.9
	Cup-stacked CNTs	Aprotic electrolyte	55.7
	Cup-stacked CNTs	Protic electrolyte	28.4
[S10]	Pristine DWNTs	0.5 M H ₂ SO ₄	22
	Pristine DWNTs	1 M Et4NBF4/PC	34
	DWNT-HNO ₃	0.5 M H ₂ SO ₄	54

Work	carbon fibers		
Present	CNT forest grown on	5 M KOH	103
		DMC)	
[S13]	SWNT film	1 M LiClO ₄ (EC-DEC-	35
[S12]	CNTs grown on Ni foam	6 M KOH	25
[S11]	MWNTs grown on metals	6 M KOH	10.75-21.57
	DWNT-HNO ₃	1 M Et4NBF4/PC	38

Method S1. Calculation of ionic conductivity of VACNTF/UCF electrodes.

The ionic conductivity of the supercapacitor electrodes is calculated by using the equation

$$\sigma = \frac{T}{R_{b} X A}$$

Where σ is the ionic conductivity in S/cm, T is the total thickness of the supercapacitor cell (in cm), R_b is the bulk electrolyte resistance (in Ω), and A is the geometrical area of electrodes (in cm²).

Method S2: Calculation of capacitance of VACNTF/UCF supercapacitor.

The capacitance of the supercapacitor is calculated by using equation

$$C_{sc} = \frac{It_{dis}}{\Delta E}$$

Where, C_{sc} is the capacitance of the supercapacitor, I is the charging current, t_{dis} is the discharging time, and ΔE is the operating potential window.

Method S3: Calculation of areal capacitance of VACNTF/UCF supercapacitor.

The areal capacitance of the supercapacitor is calculated by using the equation

$$C_{sc, A} = \frac{C_{sc}}{A_{sc}}$$

Where, $C_{sc, A}$ is the areal capacitance of the supercapacitor and A_{sc} is the total geometric area of two supercapacitor electrodes (i.e., two times the area of single electrode).

Method S4: Calculation of volumetric capacitance of VACNTF/UCF supercapacitor.

The volumetric capacitance of the supercapacitor is calculated by using the equation

$$C_{sc, V} = \frac{C_{sc}}{V_{sc}}$$

Where, $C_{sc, V}$ is the volumetric capacitance of the supercapacitor and V_{sc} is the total volume of the supercapacitor (total volume of two supercapacitor electrodes + volume of the separator + volume of electrolyte).

Method S5: Calculation of volume specific capacitance of VACNTF/UCF supercapacitor.

The volume specific capacitance of the supercapacitor is calculated [S1] by using the equation

$$C_{sc, sp, V} = 4 X \frac{C_{sc}}{V_{el}}$$

Where, $C_{sc, sp}$ is the volume specific capacitance of the supercapacitor, C_{sc} is the capacitance of the supercapacitor, V_{el} is the total volume of two supercapacitor electrodes (the volumes of separator and electrolyte were not considered).

Method S6: Calculation of volume specific energy density of VACNTF/UCF supercapacitor.

The volume specific energy density of the supercapacitor is calculated by using the equation

$$E_{sc, sp, V} = \frac{C_{sc, sp, V} X (\Delta E)^2}{2 X 3600}$$

Where $E_{sc, sp, V}$ is the volume specific energy density and all other variables as defined above.

Method S7: Calculation of volume specific power density of VACNTF/UCF supercapacitor.

The volume specific power density of the supercapacitor is calculated by using the equation

$$P_{\text{sc, sp, V}} = \frac{E_{\text{sc, sp, V}} X 3600}{t_{\text{dis}}}$$

Where $P_{sc, sp, V}$ is the volume specific power density and all other variables are defined above.

Method S8: Calculation of mass specific capacitance of VACNTF/UCF supercapacitor.

The mass specific capacitance of the supercapacitor is calculated [S2] by using the equation

$$C_{sc, m} = \frac{I X t_{dis}}{m X (\Delta E)} = \frac{C_{sc}}{m}$$

Where, m is the total mass of CNTs in the two electrodes of the supercapacitor (excluding the mass of UCFs, separator, and electrolyte), and other variables are discussed above.

Supplementary Figures:

Figure S1. Testing of VACNTF/UCF supercapacitor in a two electrode cell at a bending angle of 90 °.

Figure S2. XRD spectra of (a) nickel coated UCFs and (b) as-received UCFs.

Figure S3. EDAX spectra of nickel coated UCFs.

Figure S4. Digital images of VACNTF/UCF supercapacitor cell bend at different angles (a) straight (i.e., 180 °), (b) 150 °, (c) 45 °, (d) 20 °, and (e) 0 °.

Figure S5. CV curves of VACNTF/UCF supercapacitor at various bending angles (scan rate: 300 mV s⁻¹).

Figure S6. Plot of variation in the mass specific capacitance of VACNTF/UCF supercapacitor at various bending angles.

11

Figure S7. Plot of percentage retention in the volumetric capacitance of VACNTF/UCF supercapacitor at various bending angles.

Figure S8. Plot of percentage retention in the volumetric energy density and volumetric power density of VACNTF/UCF supercapacitor at various bending angles.

Figure S9. Plot of percentage retention in the volume specific capacitance of VACNTF/UCF supercapacitor at various cycle numbers.

Figure S10. Plot of variations in the areal capacitance of VACNTF/UCF supercapacitor at various cycle numbers.

References:

[S1] D. Yu, K. Goh, H. Wang, L.Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen, *Nature Nanotechnol.*, 2014, 9, 555-562.

[S2] A. A. Zakhidov, D. S. Suh, A. A. Kuznetsov, J. N. Barisci, E. Munoz, A. B. Dalton, S.

Collins, V. H. Ebron, M. Zhang, J. P. Ferraris, A. A. Zakhidov, and R. H. Baughman, *Adv. Funct. Mater.*, 2009, 19, 2266-2272.

[S3] E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamv, and F. Beguin, *Carbon*, 1999, 37, 61-69.

[S4] Q. Jiang, M. Z. Qu, G. M. Zhou, B. L. Zhang, and Z. L. Yu, *Mater. Lett.*, 2002, 57, 988-991.

- [S5] C. S. Li, D. Z. Wang, T. X. Liang, G. T. Li, X. F. Wang, M. S. Cao, and J. Liang, Sci. China, Ser. E-Technol. Sci., 2003, 46, 349-354.
- [S6] C. Du and N. Pan, Nanotechnology, 2006, 17, 5314-5318.
- [S7] H. Mi, X. Zhang, S. An, X. Ye, and S. Yang, *Electrochem. Commun.*, 2007, 9, 2859-2862.
- [S8] E. Frackowiak, K. Jurewicz, S. Delpeux, and F. Beguin, *J. Power Sources*, 2001, 97-98, 822-825.
- [S9] I. Y. Jang, H. Ogata, K. C. Park, S. H. Lee, J. S. Park, Y. C. Jung, Y. J. Kim, Y. A. Kim, and M. Endo, *J. Phys. Chem. Lett.*, 2010, 1, 2099-2103.
- [S10] I. Y. Jang, H. Muramatsu, K. C. Park, Y. J. Kim, and M. Endo, *Electrochem. Commun.*, 2009, 11, 719-723.
- [S11] R. Shah, X. Zhang, and S. Talapatra, Nanotechnology, 2009, 20, 395202.
- [S12] R. Shi, L. Jiang, and C. Pan, Soft Nanoscience Letters, 2011, 1, 11-15.
- [S13] Z. Niu, W. Zhou, J. Chen, G. Feng, H. Li, W. Ma, J. Li, H. Dong, Y. Ren, D. Zhao, S.
- Xie, Energy Environ. Sci., 2011, 4, 1440-1446.