ELECTRONIC SUPPORTING INFORMATION (ESI)

AgPd nanoparticles supported on zeolitic imidazolate framework derived N-

doped nanoporous carbon as efficient catalysts for formic acid

dehydrogenation

Cheng Feng, Yunhui Hao, Li Zhang, Ningzhao Shang, Shutao Gao*, Zhi Wang and

Chun Wang*

College of Science, Agricultural University of Hebei, Baoding 071001, China

Calculation methods:

The turnover frequency (TOF) reported here is an apparent TOF value baed on the number of Pd and Ag atoms in catalyst, which is calculated from the equation as follow:

$$TOF = \frac{P_{atm}V_{gas}/RT}{2n_{metal}t}$$
(S1)

where *TOF* is initial turnover frequency, P_{atm} is atmospheric pressure (101325 Pa), V_{gas} is the final generated volume of H₂/CO₂ gas, *R* is the universal gas constant (8.3145 m³·Pa·mol⁻¹·K⁻¹), T is the room temperature (298 K), n_{metal} is the mole number of the metallic catalyst and *t* is the reaction time of 5 min.

Fig. S1 GC spectrum using TCD for the evolved gas from FA aqueous solution (1.25 M, 1.0 mL) over Ag₁Pd₄@ZIF8-C(1173) composite at 353 K ($n_{meta}l/n_{FA} = 0.01$).

Fig. S2 GC spectrum using FID-Methanator for the (a) commercial pure CO, and (b) evolved gas from FA aqueous solution (1.25 M, 1.0 mL) over $Ag_1Pd_4@ZIF8-C(1173)$ composite at 353 K ($n_{metal}/n_{FA} = 0.01$).

Catalysts	Pd mass content (%)	Ag mass content (%)
Pd ₅ @ZIF8-C(1173)	4.81	0.00
Ag ₁ Pd ₄ @ZIF8-C(1173)	0.85	4.11
Ag ₂ Pd ₃ @ZIF8-C(1173)	1.79	3.22
Ag ₅ @ZIF8-C(1173)	0.00	4.95
Ag1Pd4@ZIF8-C(1073)-HCl	1.02	4.04
Ag ₁ Pd ₄ @ZIF8-C(1073)	1.10	4.20
Ag ₁ Pd ₄ @ZIF8-C(1273)	0.77	3.91

Table S1 The metal mass content in the catalysts.

Run	$TOF^{b}(h^{-1})$	$V_{gas}^{c}(mL)$
1	936	56.5
2	933	56.3
3	928	56.0
4	916	55.3
5	900	54.3

Table S2 The recyclability $Ag_1Pd_4@ZIF8-C(1173)$ for decomposition of FA^a.

^{a.} Reaction condition: FA aqueous solution (1.25 M, 1.0 mL) over Ag₁Pd₄@ZIF8-C(1173) at 353 K ($n_{metal}/n_{FA} = 0.01$);

^{b.} TOF were calculated during the first 5 min of the reactions;

 $^{c.}$ V_{gas} were the volume of H_2 /CO_2 gas calculated during the first 5 min of the reactions.