Supplementary Information

Synthesis of monofluoroalkenes through selective hydrodefluorination of

gem-difluoroalkenes with Red-Al®

Jingjing Wu,^{a,c} *Juan Xiao,^b Wenpeng Dai^b and Song Cao^b *

^aSchool of Chemical and Environmental Engineering, Shanghai Institute of Technology (SIT), Shanghai 201418, China.

^bShanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (*ECUST*), Shanghai 200237, China

^cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

*Corresponding author. Tel: +86-21-60877220; fax: +86-21-60877231; E-mail address: wujj@sit.edu.cn, scao@ecust.edu.cn

Table of contents

General experimental procedures	P1
Preparation of 1,1-difluoroalkenes 1a-n and symmetrical <i>gem</i> -difluoroalkene 1o-q	P1
General procedure for the synthesis of 2a–q	P1
Spectral and analytical data of compounds 2a-q	P2
References	P8
¹ H, ¹³ C, ¹⁹ F NMR and HRMS (EI) spectra of compounds 2a–q	Р9

General experimental procedures

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C NMR, respectively) using TMS as internal standard, The ¹⁹F NMR spectra were obtained using a 400 spectrometer (376 MHz). CDCl₃ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Preparation of 1,1-difluoroalkenes 1a-n and symmetrical gem-difluoroalkene 1o-q

The 1,1-difluoroalkenes (1a-n) were prepared according to the reported procedure.¹ The symmetrical *gem*-difluoroalkene (1o-q) was prepared according to the Hu's reported procedure.²

General procedure for the synthesis of 2a-q

To a solution of *gem*-difluoroalkenes 1a-q (1.0 mmol) in CH₂Cl₂ (8 mL) was added dropwise sodium bis(2methoxyethoxy)aluminumhydride (Red-Al[®], a 70% w/w in toluene) (0.8 mL) at room temperature. The mixture was stirred at room temperature for 1 h under argon atmosphere (TLC). After the completion of reaction, the reaction was quenched with saturated ammonium chloride solution. The aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography using *n*-hexane as eluent to afford the corresponding monofluoro reduction products 2a-q.

Spectral and analytical data of compounds 2a-q

(*E/Z*)-1-(2-Fluorovinyl)-4-methoxybenzene (2a, CAS: 26946-13-4)³:

Colorless liquid. Yield of *E*/*Z*-**2a**: 80%, *E*/*Z* ratio: 93/7. The *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy and the same below. ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, *J* = 8.7 Hz, 2H, *Z*-isomer), 7.18–7.14 (m, 2H, both *E*-and *Z*-isomers), 7.09 (dd, ²*J*_{H-F} = 84.0 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomer), 6.84 (d, *J* = 8.7 Hz, 2H, *Z*-isomer), 6.58 (dd, ²*J*_{H-F} = 80.5 Hz, ³*J*_{H-H} = 7.9 Hz, 1H, *Z*-isomer), 6.34 (dd, ³*J*_{H-F} = 19.6 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomer), 5.54 (dd, ³*J*_{H-F} = 45.2 Hz, ³*J*_{H-H} = 5.3 Hz, 1H, *Z*-isomer), 3.80 (s, 3H, *Z*-isomer), 3.79 (s, 3H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 159.3 (d, ⁵*J*_{C-F} = 1.8 Hz), 149.2 (d, ¹*J*_{C-F} = 256.3 Hz), 127.5 (d, ⁴*J*_{C-F} = 3.0 Hz), 125.3 (d, ³*J*_{C-F} = 11.7 Hz), 114.5, 113.5 (d, ²*J*_{C-F} = 16.0 Hz), 55.5 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -125.4 (dd, ²*J*_{F-H} = 83.1 Hz, ³*J*_{F-H} = 45.3 Hz, 1F, *Z*-isomer), -132.7 (dd, ²*J*_{F-H} = 83.8 Hz, ³*J*_{F-H} = 19.6 Hz, 1F, *E*-isomer) ppm.

(*E*/*Z*)-5-(2-Fluorovinyl)benzo[d][1,3]dioxole (2b, CAS: 276244-89-4)⁴:

Light yellow liquid. Yield of *E*/*Z*-**2b**: 77%, *E*/*Z* ratio: 94/6. ¹H NMR (400 MHz, CDCl₃): δ 7.10 (dd, ²*J*_{H-F} = 83.4 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomer), 6.81–6.77 (m, 2H, both *E*- and *Z*-isomers), 6.73–6.70 (m, 1H, both *E*- and *Z*-isomers), 6.61 (dd, ²*J*_{H-F} = 83.4 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer), 6.35 (dd, ³*J*_{H-F} = 19.3 Hz, ²*J*_{H-H} = 11.3 Hz, 1H, *E*-isomer), 5.98 (s, 2H, *Z*-isomer) 5.97 (s, 2H, *E*-isomer), 5.55 (dd, ³*J*_{H-F} = 44.5 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 149.3 (d, ¹*J*_{C-F} = 255.7 Hz), 148.1, 147.1 (d, ⁵*J*_{C-F} = 2.0 Hz), 126.6 (d, ³*J*_{C-F} = 11.8 Hz), 120.4 (d, ⁴*J*_{C-F} = 3.9 Hz), 113.7 (d, ²*J*_{C-F} = 16.7 Hz), 108.6, 105.8 (d, ^{5'}*J*_{C-F} = 2.2 Hz), 101.1 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –124.5 (dd, ²*J*_{F-H} = 83.0 Hz, ³*J*_{F-H} = 44.4 Hz, 1F, *Z*-isomer), -132.3 (dd, ²*J*_{F-H} = 83.4 Hz, ³*J*_{F-H} = 19.3 Hz, 1F, *E*-isomer) ppm.

(*E*/*Z*)-1-(Benzyloxy)-4-(2-fluorovinyl)benzene (2c):

White solid. Yield of E/Z-2c: 85%, E/Z ratio: 95/5. ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.38 (m, 5H, both *E*- and *Z*-isomers), 7.25–7.22 (m, 2H, both *E*- and *Z*-isomers), 7.15 (dd, ${}^{2}J_{\text{H-F}}$ = 83.6 Hz, ${}^{3}J_{\text{H-H}}$ = 11.3 Hz, 1H, *E*-isomer), 7.01–6.98 (m, 2H, both *E*- and *Z*-isomers), 6.66 (dd, ${}^{2}J_{\text{H-F}}$ = 83.1 Hz, ${}^{3}J_{\text{H-H}}$ = 5.3 Hz, 1H, *Z*-isomer), 6.42 (dd, ${}^{3}J_{\text{H-F}}$

= 19.6 Hz, ${}^{3}J_{\text{H-H}}$ = 11.3 Hz, 1H, *E*-isomer), 5.61 (dd, ${}^{3}J_{\text{H-F}}$ = 45.2 Hz, ${}^{3}J_{\text{H-H}}$ = 5.3 Hz, 1H, *Z*-isomer), 5.13 (s, 2H, *Z*-isomer), 5.12(s, 2H, *E*-isomer) ppm; 13 C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 158.4 (d, ${}^{5}J_{\text{C-F}}$ = 1.9 Hz), 149.1 (d, ${}^{1}J_{\text{C-F}}$ = 256.6 Hz), 136.9, 128.7, 128.1, 127.5, 127.4 (d, ${}^{4}J_{\text{C-F}}$ = 3.0 Hz), 125.4 (d, ${}^{3}J_{\text{C-F}}$ = 11.7 Hz), 115.3, 113.3 (d, ${}^{2}J_{\text{C-F}}$ = 16.1 Hz), 70.1 ppm; 19 F NMR (376 MHz, CDCl₃): δ -125.0 (dd, ${}^{2}J_{\text{F-H}}$ = 83.1 Hz, ${}^{3}J_{\text{F-H}}$ = 45.2 Hz,1F, *Z*-isomer), -132.3 (dd, ${}^{2}J_{\text{F-H}}$ = 83.7 Hz, ${}^{3}J_{\text{F-H}}$ = 19.6 Hz, 1F, *E*-isomer) ppm. HRMS (EI): calc. for C₁₅H₁₃FO [M]⁺ 228.0950, found 228.0949.

(E/Z)-(4-(2-Fluorovinyl)phenyl)(methyl)sulfane (2d):

Colorless oily liquid. Yield of *E*/*Z*-**2d**: 79%, *E*/*Z* ratio: 93/7. ¹H NMR (400 MHz, CDCl₃): δ 7.14 (dd, ²*J*_{H-F} = 83.2 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomer), 7.22–7.13 (m, 4H, both *E*- and *Z*-isomers), 6.62 (dd, ²*J*_{H-F} = 82.1 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer), 6.34 (dd, ³*J*_{H-F} = 19.3 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomer), 5.55 (dd, ³*J*_{H-F} = 44.8 Hz, ³*J*_{H-H} = 5.3 Hz, 1H, *Z*-isomer), 2.47 (s, 3H, *Z*-isomer), 2.46 (s, 3H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 149.9 (d, ¹*J*_{C-F} = 258.9 Hz), 137.8 (d, ⁵*J*_{C-F} = 2.2 Hz), 129.5 (d, ³*J*_{C-F} = 11.9 Hz), 126.9, 126.5 (d, ⁴*J*_{C-F} = 3.1 Hz), 113.4 (d,²*J*_{C-F} = 16.3 Hz), 15.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –122.3 (dd, ²*J*_{F-H} = 82.7 Hz, ³*J*_{F-H} = 44.8 Hz, 1F, *Z*-isomer), -130.4 (dd, ²*J*_{F-H} = 83.2 Hz, ³*J*_{F-H} = 19.2 Hz, 1F, *E*-isomer) ppm. HRMS (*E*-isomer]): calc. for C₉H₉FS [M]⁺ 168.0409, found 168.0411.

(E/Z)-4-(2-Fluorovinyl)-N,N-dimethylaniline (2e, CAS: 1259106-87-0) 5:

Light yellow solid. Yield of *E*/*Z*-**2e**: 85%, *E*/*Z* ratio: 89/11, mp 65.2–66.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.13–7.11 (m, 2H, both *E*- and *Z*-isomers), 7.07 (dd, ²*J*_{H-F}= 84.5 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomers), 6.67–6.65 (m, 2H, both *E*- and *Z*-isomers), 6.31 (dd, ³*J*_{H-F} = 20.1 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomers), 5.49 (dd, ³*J*_{H-F} = 46.2 Hz, ³*J*_{H-H} = 5.2 Hz, 1H, *Z*-isomers), 2.95 (s, 6H, *Z*-isomers), 2.94 (s, 6H, *E*-isomers)ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 150.0, 148.1 (d, ¹*J*_{C-F} = 253.8 Hz), 129.9 (d, ³*J*_{C-F} = 7.0 Hz), 127.0 (d, ⁴*J*_{C-F} = 2.9 Hz), 113.6 (d, ²*J*_{C-F} = 15.8 Hz), 112.7, 40.5 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –127.2 (dd, ²*J*_{F-H} = 83.3 Hz, ³*J*_{F-H} = 46.1 Hz, 1F, *Z*-isomers), -135.4 (dd, ²*J*_{F-H} = 84.5 Hz, ³*J*_{F-H} = 20.1 Hz, 1F, *E*-isomers) ppm.

(*E/Z*)-1-(2-Fluorovinyl)-4-methylbenzene (2f, CAS: 26928-21-2)³:

Colorless oily liquid. Yield of *E*/*Z*-**2f**: 55%, *E*/*Z* ratio: 93/7. ¹H NMR (400 MHz, CDCl₃): δ 7.19-7.14 (m, 4H, both *E*- and *Z*-isomers), δ 7.18 (dd, ²*J*_{H-F} = 83.6 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomer), 6.66 (dd, ²*J*_{H-F} = 82.9 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer), 6.41 (dd, ³*J*_{H-F} = 19.5 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomer), 5.62 (dd, ³*J*_{H-F} = 45.1 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer), 2.39 (s, 3H, *Z*-isomer), 2.37 (s, 3H, *E*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 149.7 (d, ¹*J*_{C-F} = 257.7 Hz), 137.3 (d, ⁵*J*_{C-F} = 2.1 Hz), 129.8 (d, ³*J*_{C-F} = 11.7 Hz), 129.5, 126.1 (d, ⁴*J*_{C-F} = 3.0 Hz), 113.7 (d, ²*J*_{C-F} = 15.8 Hz), 21.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -123.3 (dd, ²*J*_{F-H} = 82.9, ³*J*_{F-H} = 45.2 Hz, 1F, *Z*-isomer), -131.3 (dd, ²*J*_{F-H} = 83.6 Hz, ³*J*_{F-H} = 19.5 Hz, 1F, *E*-isomer) ppm.

(*E*/*Z*)-1-(2-Fluorovinyl)-2,4-dimethylbenzene (2g):

Colorless oily liquid. Yield of *E*/*Z*-**2**g: 70%, *E*/*Z* ratio: 95/5. ¹H NMR (400 MHz, CDCl₃): δ 7.19–7.17 (m, 1H, both *E*- and *Z*-isomers), 7.05–7.00 (m, 2H, both *E*- and *Z*-isomers), 7.02 (dd, ²*J*_{H-F} = 84.5 Hz, ³*J*_{H-H} = 11.2 Hz, 1H, *E*-isomers), 6.57 (dd, ³*J*_{H-F} = 19.6 Hz, ³*J*_{H-H} = 11.2 Hz, 1H, *E*- isomers), 5.78 (dd, ³*J*_{H-F} = 44.5 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomers), 2.36(s, 3H, both *E*- and *Z*-isomers), 2.32 (s, 3H, both *E*- and *Z*-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 149.9 (d, ¹*J*_{C-F} = 258.6 Hz), 137.5 (d, ⁵*J*_{C-F} = 1.4 Hz), 135.7 (d, ⁴*J*_{C-F} = 4.3 Hz), 131.2, 128.5 (d, ³*J*_{C-F} = 11.2 Hz), 126.9, 126.0 (d, ^{5'}*J*_{C-F} = 1.0 Hz), 111.9 (d, ²*J*_{C-F} = 15.2 Hz), 21.0, 19.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –124.8 (dd, ²*J*_{F-H} = 83.8 Hz, ³*J*_{F-H} = 44.6 Hz, 1F, *Z*-isomers), -127.8 (dd, ²*J*_{F-H} = 84.5 Hz, ³*J*_{F-H} = 19.6 Hz, 1F, *E*-isomers) ppm. HRMS (EI): calc. for C₁₀H₁₁F [M]⁺ 150.0845, found 150.0846.

(*E*/*Z*)-4-(2-Fluorovinyl)-1,2-dimethoxybenzene (2h):

Light yellow oily liquid. Yield of *E*/*Z*-**2h**: 80%, *E*/*Z* ratio: 93/7. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (dd, ²*J*_{H-F} = 83.6 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomers), 6.86–6.77 (m, 3H, both *E*- and *Z*-isomers), 6.62 (dd, ²*J*_{H-F} = 83.1 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomers) , 6.36 (dd, ³*J*_{H-F} = 19.5 Hz, ³*J*_{H-H} = 11.3 Hz, 1H, *E*-isomers), 5.56 (dd, ³*J*_{H-F} = 45.0 Hz, ³*J*_{H-H} = 5.3Hz, 1H, *Z*-isomers), 3.90 (s, 6H, *E*-isomers), 3.89 (s, 6H, *E*-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 149.2, 149.1 (d, ¹*J*_{C-F} = 257.0 Hz), 148.7 (d, ⁵*J*_{C-F} = 1.9 Hz), 125.4 (d, ³*J*_{C-F} = 11.8 Hz), 119.0 (d, ⁴*J*_{C-F} = 3.5 Hz), 113.6 (d, ²*J*_{C-F} = 16.2 Hz), 111.5, 109.0 (d, ⁴*J*_{C-F} = 2.4 Hz), 55.9, 55.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -125.1 (dd, ²*J*_{F-H} = 83.1 Hz, ³*J*_{F-H} = 45.0 Hz, 1F, *Z*-isomers), -132.3 (dd, ²*J*_{F-H} = 83.6 Hz, ³*J*_{F-H} = 19.5 Hz, 1F, *E*-isomers) ppm. HRMS (EI): calc. for C₁₀H₁₁FO₂ [M]⁺ 182.0743, found 182.0744. (*E*/*Z*)-1-(2-Fluorovinyl)-2-methoxybenzene (2i, CAS: 95799-46-5)³:

Colorless oily liquid. Yield of *E*/*Z*-**2i**: 81%, *E*/*Z* ratio: 93/7. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (dd, ²*J*_{H-F} = 86.3 Hz, ³*J*_{H-H} = 11.2 Hz, 1H, *E*-isomers), 7.28–7.22 (m, 2H, both *E*- and *Z*-isomers), 6.98–6.92 (m, 2H, both *E*- and *Z*-isomers), 6.72 (dd, ²*J*_{H-F} = 83.8 Hz, ³*J*_{H-H} = 5.5 Hz, 1H, *Z*-isomers), 6.55 (dd, ³*J*_{H-F} = 22.3 Hz, ³*J*_{H-H} = 11.2 Hz, 1H, *E*-isomers), 6.11 (dd, ³*J*_{H-F} = 46.4 Hz, ³*J*_{H-H} = 5.5 Hz, 1H, *Z*-isomers), 3.91 (s, 3H, *E*-isomers), 3.88 (s, 3H, *Z*-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 156.8 (d, ⁴*J*_{C-F} = 2.9 Hz), 151.6 (d, ¹*J*_{C-F} = 250.0 Hz), 128.5 (d, ^{4'}*J*_{C-F} = 2.7 Hz), 128.3 (d, ⁵*J*_{C-F} = 2.1 Hz), 121.6 (d, ³*J*_{C-F} = 11.2 Hz), 120.7, 110.8, 110.5 (d, ²*J*_{C-F} = 18.3 Hz), 55.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –123.9 (dd, ²*J*_{F-H} = 83.8 Hz, ³*J*_{F-H} = 46.4 Hz, 1F, *Z*-isomers), -125.0 (dd, ²*J*_{F-H} = 86.3 Hz, ³*J*_{F-H} = 22.3 Hz, 1F, *E*-isomers) ppm.

(E/Z)-1-(tert-Butyl)-4-(2-fluorovinyl)benzene (2j):

Colorless oily liquid. Yield of *E*/*Z*-**2j**: 84%, *E*/*Z* ratio: 90/10. ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.32 (m, 2H, both *E*- and *Z*-isomers), 7.14 (dd, ²*J*_{H-F}= 83.8 Hz, ³*J*_{H-H} = 11.2 Hz, 1H, *E*-isomers), 7.19–7.17 (m, 2H, both *E*- and *Z*-isomers), 6.62 (dd, ²*J*_{H-F} = 82.9 Hz, ³*J*_{H-H} = 5.3 Hz, 1H, *Z*-isomers), 6.37 (dd, ³*J*_{H-F} = 19.5 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomers), 5.58 (dd, ³*J*_{H-F} = 45.1 Hz, ³*J*_{H-H} = 5.3 Hz, 1H, *Z*-isomers), 1.32–1.31 (m, 9H, both *E*- and *Z*-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 150.6 (d, ⁵*J*_{C-F} = 2.1 Hz), 149.8 (d, ¹*J*_{C-F} = 257.9 Hz), 129.8 (d, ³*J*_{C-F} = 11.8 Hz), 125.9 (d, ⁴*J*_{C-F} = 3.0 Hz), 125.7, 113.6 (d, ²*J*_{C-F} = 15.7 Hz), 34.6, 31.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –123.2 (dd, ²*J*_{F-H} = 82.9 Hz, ³*J*_{F-H} = 45.1 Hz, 1F, *Z*-isomers), -140.0 (dd, ²*J*_{F-H} = 83.6 Hz, ³*J*_{F-H} = 19.5 Hz, 1F, *E*-isomers) ppm. HRMS (EI): calc. for C₁₂H₁₅F [M]⁺ 178.1158, found 178.1159.

(E/Z)-1-Chloro-4-(2-fluorovinyl)benzene (2k, CAS: 26928-23-4) 5:

Colorless oily liquid. Yield of *E*/*Z*-**2k**: 70%, *E*/*Z* ratio: 95/5. ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.25 (m, 2H, both *E*- and *Z*-isomers), 7.17–7.15 (m, 2H, both *E*- and *Z*-isomers), 7.14 (dd, ²*J*_{H-F} = 82.4 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomers), 6.65 (dd, ²*J*_{H-F} = 82.5 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomers), 6.34 (dd, ³*J*_{H-F} = 19.0 Hz, ³*J*_{H-H} = 11.4 Hz, 1H, *E*-isomers), 5.57 (dd, ³*J*_{H-F} = 44.2 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 150.4 (d, ¹*J*_{C-F} = 260.4 Hz), 133.2 (d, ⁵*J*_{C-F} = 2.2 Hz), 129.0, 131.2 (d, ³*J*_{C-F} = 12.1 Hz), 127.4 (d, ⁴*J*_{C-F} = 3.1 Hz), 113.0 (d, ²*J*_{C-F} = 16.6 Hz) ppm;¹⁹F NMR (376 MHz, CDCl₃): δ –121.3 (dd, ²*J*_{F-H} = 82.4

Hz, ${}^{3}J_{F-H}$ = 44.2 Hz, 1F, Z-isomers), -128.6 (dd, ${}^{2}J_{F-H}$ = 82.6 Hz, ${}^{3}J_{F-H}$ = 19.0 Hz, 1F, E-isomers) ppm.

(E/Z)-1-Bromo-3-(2-fluorovinyl)benzene (2l):

Colorless oily liquid. Yield of *E*/*Z*-**21**: 65%, *E*/*Z* ratio: 92/8. ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.40 (m, 2H, both *E*- and *Z*-isomers), 7.21–7.19 (m, 2H, both *E*- and *Z*-isomers), 7.18 (dd, ¹*J*_{H-F} = 82.4 Hz, ²*J*_{H-H} =11.4 Hz, 1H, *E*-isomer), 6.70 (dd, ²*J*_{H-F} = 82.2 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer), 6.36 (dd, ²*J*_{H-F} = 18.7 Hz, ²*J*_{H-H} = 11.4 Hz, 1H, *E*-isomer), 5.59 (dd, ³*J*_{H-F} = 43.8 Hz, ³*J*_{H-H} = 5.4 Hz, 1H, *Z*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 150.9 (d, ¹*J*_{C-F} = 261.7 Hz), 134.9 (d, ³*J*_{C-F} = 12.2 Hz), 130.5 (d, ⁵*J*_{C-F} = 2.0 Hz), 130.4, 129.1 (d, ⁴*J*_{C-F} = 3.0 Hz), 124.8, 122.9, 112.9 (d, ²*J*_{C-F} = 16.8 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –119.90 (dd, ²*J*_{F-H} = 82.2 Hz, ³*J*_{F-H} = 43.8 Hz, 1F, *Z*-isomer), -127.24 (dd, ²*J*_{F-H} = 82.7 Hz, ³*J*_{F-H} = 18.8 Hz, 1F, *E*-isomer) ppm. HRMS (EI): calc. for C₈H₆BrF [M]⁺ 201.9616, found 201.9615.

(E/Z)-1-(2-fluorovinyl)naphthalene (2m, CAS: 1236300-50-7)³:

Colorless oily liquid. Yield of *E*/*Z*-**2m**: 83%, *E*/*Z* ratio: 90/10. ¹H NMR (400 MHz, CDCl₃): δ 8.00–7.97 (m, 1H, both *E*- and *Z*-isomers), 7.85–7.77 (m, 2H, both *E*- and *Z*-isomers), 7.54–7.48 (m, 2H, both *E*- and *Z*-isomers), 7.43–7.38 (m, 2H, both *E*- and *Z*-isomers), 7.07 (dd, ²*J*_{H-F} = 86.0 Hz, ³*J*_{H-H} = 11.1 Hz, 1H, *E*-isomer), 7.05 (dd, ³*J*_{H-F} = 15.9 Hz, ³*J*_{H-H} = 11.1Hz, 1H, *E*-isomer), 6.87 (dd, ¹*J*_{H-F} = 83.2 Hz, ²*J*_{H-H} = 5.5 Hz, 1H, *Z*-isomer), 6.29 (dd, ³*J*_{H-F} = 42.6 Hz, ³*J*_{H-H} = 5.5 Hz, 1H, *Z*-isomer) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 151.0 (d, ¹*J*_{C-F} = 262.1 Hz), 134.0, 131.9 (d, ⁴*J*_{C-F} = 3.4 Hz), 129.9 (d, ³*J*_{C-F} = 11.6 Hz), 128.8, 128.6, 126.6, 126.4, 125.8, 124.7 (d, ⁵*J*_{C-F} = 1.5 Hz), 124.3, 111.7 (d, ²*J*_{C-F} = 15.3 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –123.2 (dd, ²*J*_{F-H} = 83.4 Hz, ³*J*_{F-H} = 42.5 Hz, 1F, *Z*-isomer), -123.6 (dd, ²*J*_{F-H} = 85.1 Hz, ³*J*_{F-H} = 16.0 Hz, 1F, *E*-isomer) ppm.

(*E*/*Z*)-4-(2-Fluorovinyl)-1,1'-biphenyl (2n, CAS: 123133-22-2) ⁶:

White solid. Yield of E/Z-2n: 91%, E/Z ratio: 92/8, mp 113.8–117.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.58–7.52 (m, 4H, both *E*- and *Z*-isomers), 7.44–7.41 (m, 2H, both *E*- and *Z*-isomers), 7.35–7.29 (m, 3H, both *E*- and *Z*-isomers), 7.20 (dd, ${}^{2}J_{\text{H-F}} = 82.4 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 11.4 \text{ Hz}$, 1H, *E*-isomers), 6.66 (dd, ${}^{2}J_{\text{H-F}} = 82.6 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 6.41 (dd, ${}^{3}J_{\text{H-F}} = 19.3 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 11.4 \text{ Hz}$, 1H, *E*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 6.41 (dd, ${}^{3}J_{\text{H-F}} = 19.3 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 11.4 \text{ Hz}$, 1H, *E*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 6.41 (dd, ${}^{3}J_{\text{H-F}} = 19.3 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 11.4 \text{ Hz}$, 1H, *E*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 6.41 (dd, ${}^{3}J_{\text{H-F}} = 19.3 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 11.4 \text{ Hz}$, 1H, *E*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 44.8 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, ${}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}$, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}, 1H, *Z*-isomers), 5.64 (dd, {}^{3}J_{\text{H-F}} = 5.3 \text{ Hz}

Hz, 1H, Z-isomers) ppm; ¹³C NMR (100 MHz, CDCl₃) for the major *E*-isomer: δ 150.3 (d, ¹*J*_{C-F} = 259.4 Hz), 140.6, 140.4 (d, ⁴*J*_{C-F} = 2.1 Hz), 131.7 (d, ³*J*_{C-F} = 11.8 Hz), 128.9, 127.5, 127.4, 127.0, 126.6 (d, ⁵*J*_{C-F} = 3.0 Hz), 113.6 (d, ²*J*_{C-F} = 16.1 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -121.6 (dd, ²*J*_{F-H} = 82.7 Hz, ³*J*_{F-H} = 44.9 Hz, 1F, *Z*-isomers), -129.4 (dd, ²*J*_{F-H} = 83.2 Hz, ³*J*_{F-H} = 19.3 Hz, 1F, *E*-isomers) ppm.

(2-Fluoroethene-1,1-diyl)dibenzene (20, CAS: 390-75-0) 6:

Colorless oily liquid. Yield of **2o**: 80%.¹H NMR (400 MHz, CDCl₃): δ 7.42–7.29 (m, 10H), 7.02 (d,²J_{H-F} =83.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 145.9 (d, ¹J_{C-F} = 268.6 Hz), 137.0 (d,³J_{C-F} =8.1 Hz), 135.2, 129.8 (d, ⁴J_{C-F} = 4.0 Hz), 128.7 (d, ⁶J_{C-F} = 3.2 Hz), 128.4 (d, ²J_{C-F} = 29.4 Hz), 127.8 (d, ⁵J_{C-F} = 3.9 Hz), 126.3 (d, ⁴J_{C-F} = 5.6 Hz) ppm; ¹⁹F NMR (376 M Hz, CDCl₃): δ -128.0 (d,²J_{F-H} = 83.4 Hz) ppm.

4,4'-(2-Fluoroethene-1,1-diyl)bis(methylbenzene) (2p, CAS: 26551-47-3) 5:

White solid. Yield of **2p**: 78%, mp 89.4–91.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.12 (m, 8H), 6.90 (d, ²*J*_{H-F} = 83.9 Hz, 1H), 2.35 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 145.3 (d, ¹*J*_{C-F} = 267.3 Hz), 137.6 (d, ⁴*J*_{C-F} = 5.5 Hz), 134.3 (d, ³*J*_{C-F} = 8.1 Hz), 129.7 (d, ⁵*J*_{C-F} = 4.3 Hz), 129.1 (d, ²*J*_{C-F} = 28.5 Hz), 128.6 (d, ⁶*J*_{C-F} = 3.1 Hz), 125.9 (d, ⁴*J*_{C-F} = 5.5 Hz), 21.3 (d, *J*_{C-F} = 11.3 Hz) ppm; ¹⁹F NMR (376 M Hz, CDCl₃): δ –129.3 (d, ²*J*_{F-H} = 83.9 Hz) ppm. **4,4'-(2-Fluoroethene-1,1-diyl)bis(bromobenzene)** (**2q, CAS: 1427-99-2**) ⁷:

White solid. Yield of **2q**: 83%, mp 77.7–79.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.06 (m, 8H), 6.92 (d, ²*J*_{H-F} = 82.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 146.1 (d, ¹*J*_{C-F} = 271.1 Hz), 135.4 (d, ³*J*_{C-F} = 8.1 Hz), 133.5, 131.8 (d, *J*_{C-F} = 29.2 Hz), 131.4 (d, ⁴*J*_{C-F} = 4.4 Hz), 130.3 (d, ⁵*J*_{C-F} = 3.1 Hz), 124.6 (d, ⁴*J*_{C-F} = 6.0 Hz), 122.2 (d, ²*J*_{C-F} = 11.9 Hz) ppm; ¹⁹F NMR (376 M Hz, CDCl₃): δ –125.6 (d, ²*J*_{F-H} = 82.4 Hz) ppm.

References

- 1. C. S. Thomoson, H. Martinez and W. R. Dolbier Jr., J. Fluorine Chem., 2013, 150, 53.
- 2. M. Hu, Z. He, B. Gao, L. Li, C. Ni and J. Hu, J. Am. Chem. Soc., 2013, 135, 17302.
- 3. G. Landelle, M. O. Turcotte-Savard, L. Angers and J. F. Paquin, Org. Lett., 2011, 13, 1568.
- 4. K. Kataoka and S. Tsuboi, *Synthesis*, 2000, **3**, 452.
- G. K. S. Prakash, A. Shakhmin, M. Zibinsky, I. Ledneczki, S. Chacko and G. A. Olah, *J. Fluorine Chem.*, 2010, 131, 1192.
- 6. H. Zhang, C. B. Zhou, Q. Y. Chen, J. C. Xiao and R. Hong, Org. Lett., 2011, 13, 560.
- 7. J. Bornstein, M. S. Blum and J. J. Pratt Jr., J. Org. Chem., 1957, 22, 1210.

¹H, ¹³C, ¹⁹F NMR and HRMS (EI) spectra of compounds 2a-q

¹H NMR spectra of *E*/*Z*-2a

¹³C NMR spectra of *E*/*Z*-2a

¹⁹F NMR spectra of E/Z-2a

¹H NMR spectra of *E*/*Z*-2b

¹³C NMR spectra of *E*/*Z*-2b

¹⁹F NMR spectra of E/Z-2b

¹H NMR spectra of E/Z-2c

¹³C NMR spectra of E/Z-2c

¹⁹F NMR spectra of E/Z-2c

HRMS (EI) spectra of *E*/*Z*-2c

¹H NMR spectra of E/Z-2d

¹³C NMR spectra of E/Z-2d

¹⁹F NMR spectra of E/Z-2d

HRMS (EI) spectra of *E*/*Z*-2d

¹H NMR spectra of E/Z-2f

¹³C NMR spectra of E/Z-2f

¹⁹F NMR spectra of E/Z-2f

¹H NMR spectra of E/Z-2g

¹³C NMR spectra of E/Z-2g

¹⁹F NMR spectra of E/Z-2g

HRMS (EI) spectra of *E*/*Z*-2g

¹³C NMR spectra of E/Z-2h

¹⁹F NMR spectra of E/Z-2h

HRMS (EI) spectra of *E*/*Z*-2h

¹H NMR spectra of *E*/*Z*-2i

100 90 f1 (ppm)

¹⁹F NMR spectra of E/Z-2i

¹H NMR spectra of E/Z-2j

¹³C NMR spectra of E/Z-2j

¹⁹F NMR spectra of *E*/*Z*-2j

HRMS (EI) spectra of *E*/*Z*-2j

¹³C NMR spectra of E/Z-2k

13 C NMR spectra of *E*/*Z*-2l

¹⁹F NMR spectra of E/Z-2l

¹H NMR spectra of E/Z-2m

¹³C NMR spectra of E/Z-2m

¹⁹F NMR spectra of E/Z-2m

¹³C NMR spectra of E/Z-2n

¹⁹F NMR spectra of E/Z-2n

¹H NMR spectra of E/Z-20

¹³C NMR spectra of E/Z-20

¹⁹F NMR spectra of E/Z-20

¹³C NMR spectra of E/Z-2p

¹⁹F NMR spectra of E/Z-2p

¹H NMR spectra of E/Z-2q

¹³C NMR spectra of E/Z-2q

