Table of Contents

Regioselective synthesis of pyrrolo[1,2-*a*]imidazoles and imidazo-[1,2-*a*]-pyridines

Kai-Min Wang,[‡] Yu-Lu Ma,[‡] Xin-Rong Lin, Sheng-Jiao Yan,^{*} and Jun Lin^{*}

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

General Inf	formation	3
General Pr	rocedure for the Preparation of Pyrrolo[1,2-a]imidazole and Imidazo[1,2-a]-pyric	lines
Derivatives	s 5~8	3
Spectrosco	pic Data of Pyrrolo[1,2-a]imidazoles 5–6	4
Spectrosco	pic Data of Imidazo[1,2- <i>a</i>]-pyridines 7–8	11
X-ray Struc	cture and Data of 5e	16
X-ray Struc	cture and Data of 7e	20
Figure 1.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5a	25
Figure 2.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5a	26
Figure 3.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5b	27
Figure 4.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5b	28
Figure 5.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5c	29
Figure 6.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5 c	30
Figure 7.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5d	31
Figure 8.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5d	32
Figure 9.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5e	33
Figure 10.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5e	34
Figure 11.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5f	35
Figure 12.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5f	36
Figure 13.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5 g	37
Figure 14.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5 g	38
Figure 15.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5h	39
Figure 16.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5h	40
Figure 17.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5i	41
Figure 18.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5i	42
Figure 19.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 5 j	43

^{*} Corresponding author. Tel.: 0086-871-5033215; fax: 0086-871-5033215; e-mail: <u>yansj@ynu.edu.cn</u>; <u>linjun@ynu.edu.cn</u>.

[‡] The two authors contributed equally to this paper.

Figure 20.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 5 j	44
Figure 21.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6a	45
Figure 22.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6a	46
Figure 23.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6b	47
Figure 24.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6b	
Figure 25.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6c	49
Figure 26.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6c	50
Figure 27.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6d	51
Figure 28.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6d	
Figure 29.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6e	53
Figure 30.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6e	54
Figure 31.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6f	55
Figure 32.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6f	56
Figure 33.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 6g	57
Figure 34.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 6g	58
Figure 35.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7a	59
Figure 36.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7a	60
Figure 37.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7b	61
Figure 38.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 7b	62
Figure 39.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7c	63
Figure 40.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7c	64
Figure 41.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7d	65
Figure 42.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7d	66
Figure 43.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7e	67
Figure 44.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 7e	
Figure 45.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7f	
Figure 46.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7f	
Figure 47.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound $7g$	71
Figure 48.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7g	72
Figure 49.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 7h	73
Figure 50.	13 C NMR (100 MHZ, CDCl ₃) spectra of compound 7h	74
Figure 51.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 8a	75
Figure 52.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 8a	76
Figure 53.	¹ H NMR (400 MHZ, CDCl ₃) spectra of compound 8b	77
Figure 54.	¹³ C NMR (100 MHZ, CDCl ₃) spectra of compound 8b	
References	and Notes	79

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX400 (¹H: 400 MHZ, ¹³C: 100 MHZ), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

Compounds 1-3 were prepared according to the literature¹. The materials 4a-4b were purchased from Adamas-beta Corporation Limited.

<u>General Procedure for the Preparation of Pyrrolo[1,2-*a*]imidazole and <u>Imidazo[1,2-*a*]-pyridines Derivatives 5~8</u></u>

HKA derivatives 1-3 (1.0 mmol), Michael reaction acceptors 4 (1.1 mmol) and CH₃CN (10 ml) were placed into a 25 mL round-bottom flask and the mixture was stirred at reflux for 30–120 min. Completion of the reaction was monitored by TLC. The reaction mixture was then filtered to obtain the pure crude product, which was further washed with Hexane/EtOH (10:1) to give pure products **5–8** with a yield of 81–98%.

Spectroscopic Data of Pyrrolo[1,2-a]imidazoles 5-6

8-(4-methoxybenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]p yrimidin-6(2*H*)-one (5a)

Red solid; Mp 90.5–92.9 °C; IR (KBr): 3440, 2930, 1634, 1518, 1443, 1253, 1165, 1025 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.99-2.06$ (m, 2H, CH₂), 3.00–3.21 (m, 2H, COCH₂), 3.39–3.47 (m, 2H, CH₂N), 3.55–3.70 (m, 2H, NCH₂), 3.73 (s, 3H, OCH₃), 3.90–3.96 (m, 1H, CH), 6.70–6.87 (m, 2H, ArH), 7.14–7.29 (m, 2H, ArH), 7.31–7.41 (m, 3H, ArH), 7.41–7.51 (m, 2H, ArH), 9.89 (br, 1H, NH); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 20.1$, 37.3, 38.2, 38.6, 41.1, 55.3, 88.5, 113.6, 127.9, 128.3, 128.5, 133.0, 134.1, 136.5, 158.9, 160.7, 177.4, 184.0, 197.4; HRMS (TOF ES⁺): *m/z* calcd for C₂₃H₂₂N₂NaO₄ [(M+Na)⁺], 413.1472; found, 413.1469.

8-(4-methylbenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyr imidin-6(2*H*)-one (5b)

Red solid; Mp 87.9–88.5 °C; IR (KBr): 3394, 2923, 1636, 1522, 1443, 1262, 1164, 1093 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 2.03-2.09$ (m, 2H, CH₂), 2.29 (s, 3H, ArCH₃), 2.97–3.16 (m, 2H, COCH₂), 3.40–3.50 (m, 2H, CH₂N), 3.61–3.74 (m, 2H, NCH₂), 3.89–3.91 (m, 1H, CH), 7.05–7.07 (m, 2H, ArH), 7.19–7.27 (m, 4H, ArH), 7.39–7.43 (m, 3H, ArH), 9.89 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 20.1$, 21.4, 37.3, 38.2, 38.6, 41.0, 88.8, 126.7, 127.9, 128.3, 129.0, 133.0, 136.5, 138.8, 139.6, 159.0, 177.5, 184.8, 197.4; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₃H₂₂N₂NaO₃ [(M+Na)⁺], 397.1523; found, 397.1525.

8-benzoyl-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyrimidin-6(2 *H*)-one (5c)

Red solid; Mp 126.4–126.9 °C; IR (KBr): 3438, 2894, 1729, 1528, 1443, 1265, 1158, 745 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 2.07-2.14$ (m, 2H, CH₂), 3.03–3.13 (m,

2H, COCH₂), 3.47–3.53 (m, 2H, CH₂N), 3.70–3.78 (m, 2H, NCH₂), 3.92–3.94 (m, 1H, CH), 7.27–7.48 (m, 10H, ArH), 9.95 (br, 1H, NH); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 20.1, 37.3, 38.1, 38.6, 40.9, 88.8, 126.5, 127.9, 128.3, 128.4, 129.5, 133.1, 136.4, 141.7, 159.1, 177.4, 184.7, 197.3; HRMS (TOF ES⁺):$ *m*/*z*calcd for C₂₂H₂₁N₂O₃ [(M+H)⁺], 361.1547; found, 361.1545.

8-(4-chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyri midin-6(2*H*)-one (5d)

Red solid; Mp 141.9–143.0 °C; IR (KBr): 3441, 2911, 1729, 1631, 1527, 1440, 1265, 760 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.98–2.07 (m, 2H, CH₂), 3.00–3.13 (m, 2H, COCH₂), 3.38–3.47 (m, 2H, CH₂N), 3.60–3.72 (m, 2H, NCH₂), 3.84–3.86 (m, 1H, CH), 7.20–7.28 (m, 4H, ArH), 7.26–7.30 (m, 2H, ArH), 7.38–7.45 (m, 3H, ArH), 9.90 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 20.0, 37.3, 38.2, 38.7, 40.7, 88.8, 127.8, 128.1, 128.4, 128.6, 133.2, 135.4, 136.3, 140.0, 159.4, 177.2, 183.0, 197.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₂H₁₉ClN₂NaO₃ [(M+Na)⁺], 417.0976; found, 417.0976.

8-(4-fluorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyri midin-6(2*H*)-one (5e)

Red solid; Mp 117.6–118.7 °C; IR (KBr): 3221, 3059, 2878, 1728, 1636, 1526, 1270, 1092 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 2.00–2.10 (m, 2H, CH₂), 3.00–3.14 (m, 2H, COCH₂), 3.41–3.51 (m, 2H, CH₂N), 3.62–3.76 (m, 2H, NCH₂), 3.85–3.88 (m, 1H, CH), 6.92–6.97 (m, 2H, ArH), 7.19–7.27 (m, 2H, ArH), 7.34–7.46 (m, 5H, ArH), 9.88 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 20.1, 37.3, 38.2, 38.7, 40.8, 88.7, 115.2 (*J* = 21.3 Hz), 115.5 (*J* = 21.3 Hz), 127.8, 128.4, 128.7 (*J* = 8.2 Hz), 128.8 (*J* = 8.2 Hz), 133.2, 136.3, 137.8, 159.3, 162.1 (*J* = 247.8 Hz), 164.6 (*J* = 247.8 Hz), 177.3, 183.3, 197.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₂H₁₉FN₂NaO₃ [(M+Na)⁺], 401.1272; found, 401.1268.

8-nitro-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyrimidin-6(2*H*)one (5f)

Red solid; Mp 147.4–148.1 °C; IR (KBr): 3464, 3265, 2971, 1748, 1668, 1515, 1310, 1155 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 2.00–2.13 (m, 2H, CH₂), 3.48–3.52 (m, 2H, COCH₂), 3.52–3.67 (m, 2H, CH₂N), 3.72–3.78 (m, 2H, CH₂N), 4.30–4.35 (m, 1H, CH), 7.34–7.38 (m, 2H, ArH), 7.45–7.48 (m, 1H, ArH), 7.80–7.83 (m, 2H, ArH), 9.13 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 19.4, 36.4, 37.3, 39.3, 39.9, 105.0, 128.1, 128.7, 133.6, 135.9, 154.2, 137.4, 197.5; HRMS (TOF ES⁺): *m/z* calcd for C₁₅H₁₅N₃NaO₄ [(M+Na)⁺], 324.0955; found, 324.0954.

8-(2-chlorobenzoyl)-7-(2-oxo-2-phenylethyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyri midin-6(2*H*)-one (5g)

White solid; Mp 266.9–268.2 °C; IR (KBr): 3434, 3246, 2888, 1731, 1630, 1526, 1365, 1094 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 2.08-2.15$ (m, 2H, CH₂), 2.76–2.81 (m, 1H, COCH₂), 3.02–3.08 (m, 1H, COCH₂), 3.46–3.51 (m, 2H, CH₂N), 3.55–3.58 (m, 1H, CH), 3.64–3.76 (m, 2H, NCH₂), 6.97–7.05 (m, 2H, ArH), 7.15–7.30 (m, 4H, ArH), 7.42–7.45 (m, 1H, ArH), 7.49–7.52 (m, 2H, ArH), 9.63 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 20.0, 37.3, 38.1, 38.7, 39.8, 90.0, 126.9, 127.8, 128.1, 128.4, 129.6, 129.7, 130.1, 133.2, 136.1, 140.9, 158.9, 177.3, 182.7, 196.6; HRMS (TOF ES⁺):$ *m*/*z*calcd for C₂₂H₁₉ClN₂NaO₃ [(M+Na)⁺], 417.0976; found, 417.0976.

8-(4-methylbenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyrimidin-6 (2*H*)-one (5h)

White solid; Mp 228.7–229.5 °C; IR (KBr): 3435, 2922, 1719, 1626, 1532, 1440, 1272, 1162 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.75 (s, 3H, COCH₃), 1.98–2.02 (m, 2H, CH₂), 2.30 (s, 3H, ArCH₃), 2.37–2.43 (m, 1H, COCH₂), 2.56–2.62 (m, 1H, COCH₂), 3.39–3.43 (m, 2H, CH₂N), 3.58–3.63 (m, 2H, NCH₂), 3.72–3.75 (m, 1H, CH), 7.10–7.12 (m, 2H, ArH), 7.31–7.33 (m, 2H, ArH), 9.88 (br, 1H, NH); ¹³C NMR

(100 MH_Z, CDCl₃): δ = 20.1, 21.4, 30.1, 37.3, 38.6, 40.7, 42.9, 88.5, 126.6, 129.0, 138.8, 139.7, 158.8, 177.2, 184.6, 205.6; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₂₀N₂NaO₃ [(M+Na)⁺], 335.1366; found, 335.1365.

8-benzoyl-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyrimidin-6(2*H*)-one (5i)

White solid; Mp 195.0–196.7 °C; IR (KBr): 3205, 3050, 2967, 1720, 1628, 1536, 1363, 1079 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 1.72$ (s, 3H, COCH₃), 1.98–2.01 (m, 2H, CH₂), 2.30–2.36 (m, 1H, COCH₂), 2.54–2.59 (m, 1H, COCH₂), 3.38–3.43 (m, 2H, CH₂N), 3.58–3.63 (m, 2H, NCH₂), 3.70–3.72 (m, 1H, CH), 7.29–7.32 (m, 3H, ArH), 7.39–7.42 (m, 2H, ArH), 9.87 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 20.0, 30.0, 37.2, 38.6, 40.6, 42.8, 88.7, 126.4, 128.4, 129.6, 141.6, 158.9, 177.2, 184.5, 205.6; HRMS (TOF ES⁺):$ *m*/*z*calcd for C₁₇H₁₈N₂NaO₃ [(M+Na)⁺], 321.1210; found, 321.1210.

8-(4-fluorobenzoyl)-7-(2-oxopropyl)-1,3,4,7-tetrahydropyrrolo[1,2-*a*]pyrimidin-6(2*H*)-one (5j)

White solid; Mp 237.7–238.8 °C; IR (KBr): 3231, 3064, 2876, 1724, 1629, 1536, 1263, 1083 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 1.77$ (s, 3H, COCH₃), 2.01–2.07 (m, 2H, CH₂), 2.36–2.43 (m, 1H, COCH₂), 2.59–2.64 (m, 1H, COCH₂), 3.42–3.47 (m, 2H, CH₂N), 3.61–3.66 (m, 2H, NCH₂), 3.70–3.73 (m, 1H, CH), 6.98–7.03 (m, 2H, ArH), 7.42–7.45 (m, 2H, ArH), 9.88 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 20.0, 30.0, 37.3, 38.6, 40.6, 42.9, 88.5, 115.3$ (J = 21.4 Hz), 115.5 (J = 21.4 Hz), 128.7 (J = 8.4 Hz), 128.8 (J = 8.4 Hz), 137.7, 159.2, 162.2 (J = 248.0 Hz), 164.6 (J = 248.0 Hz), 177.0, 183.1, 205.4; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₇FN₂NaO₃ [(M+Na)⁺], 339.1115; found, 339.1115.

9-(4-methylbenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1, 2-*a*][1,3]diazepin-7-one (6a)

Red solid; Mp 164.0–164.9 °C; IR (KBr): 3436, 2941, 1732, 1680, 1532, 1443, 1237, 1141 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.99–2.09 (m, 4H, CH₂CH₂), 2.29 (s, 3H, ArCH₃), 2.96–3.09 (m, 2H, COCH₂C), 3.46–3.54 (m, 2H, CH₂N), 3.77–3.91 (m, 1H, NCH₂), 3.93–3.95 (m, 1H, CH), 3.96–4.00 (m, 1H, NCH₂), 7.05–7.07 (m, 2H, ArH), 7.20–7.25 (m, 4H, ArH), 7.38–7.44 (m, 2H, ArH), 10.71 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 21.4, 24.9, 27.4, 38.6, 41.1, 41.2, 42.7, 90.6, 126.6, 127.9, 128.3, 129.0, 133.0, 136.5, 138.9, 139.6, 165.2, 178.8, 185.0, 197.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₂₄N₂NaO₃ [(M+Na)⁺], 411.1679; found, 411.1679.

9-benzoyl-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1,2-*a*][1,3]di azepin-7-one (6b)

Red solid; Mp 159.4–160.9 °C; IR (KBr): 3454, 3054, 2903, 1735, 1617, 1447, 1275, 1142, cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 1.92-2.08$ (m, 4H, CH₂CH₂), 2.95–2.97 (m, 2H, COCH₂), 3.44–3.51 (m, 2H, CH₂N), 3.78–3.85 (m, 1H, NCH₂), 3.83–3.85 (m, 1H, CH), 3.90–3.96 (m, 1H, NCH₂), 7.18–7.30 (m, 7H, ArH), 7.30–7.40 (m, 3H, ArH), 10.71 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 24.8$, 27.3, 38.5, 41.0, 41.2, 42.6, 90.5, 126.5, 127.9, 128.3, 128.4, 129.4, 133.1, 136.3, 141.8, 165.3, 178.7, 184.9, 197.1; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₃H₂₂N₂NaO₃ [(M+Na)⁺], 397.1523; found, 397.1519.

9-(4-chlorobenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1, 2-*a*][1,3]diazepin-7-one (6c)

Red solid; Mp 175.9–177.4 °C; IR (KBr): 3454, 3061, 2929, 1736, 1616, 1441, 1275, 1142 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 2.00–2.19 (m, 4H, CH₂CH₂), 3.10–3.12 (m, 2H, COCH₂), 3.56–3.64 (m, 2H, CH₂N), 3.87–3.93 (m, 1H, NCH₂), 3.91–3.93 (m, 1H, CH), 4.01–4.07 (m, 1H, NCH₂), 7.28–7.36 (m, 6H, ArH), 7.46–7.55 (m, 3H, ArH), 10.83 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 24.8, 27.2, 38.7, 40.9,

41.2, 42.7, 90.5, 127.9, 128.1, 128.4, 128.6, 133.2, 135.4, 136.2, 140.1, 165.6, 178.5, 183.2, 196.9; HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₁ClN₂O₃ [(M+Na)⁺], 431.1133; found, 431.1140.

9-(4-fluorobenzoyl)-8-(2-oxo-2-phenylethyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1, 2-*a*][1,3]diazepin-7-one (6d)

Red solid; Mp 178.3–179.0 °C; IR (KBr): 3449, 3065, 2917, 1734, 1685, 1540, 1369, 1144 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 2.02–2.11 (m, 4H, CH₂CH₂), 3.01–3.02 (m, 2H, COCH₂), 3.47–3.56 (m, 2H, CH₂N), 3.78–3.82 (m, 1H, NCH₂), 3.81–3.83 (m, 1H, CH), 3.84–3.99 (m, 1H, NCH₂), 6.92–6.96 (m, 2H, ArH), 7.22–7.46 (m, 7H, ArH), 10.73 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 24.8, 27.3, 38.6, 40.9, 41.2, 42.6, 90.4, 115.2 (*J* = 21.3 Hz), 115.5 (*J* = 21.3 Hz), 127.8, 128.4, 128.7 (*J* = 8.3 Hz), 133.2, 136.3, 137.9 (*J* = 2.6 Hz), 137.9 (*J* = 2.6 Hz), 162.0 (*J* = 247.7 Hz), 164.5 (*J* = 247.7 Hz), 165.5, 178.6, 183.4, 196.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₃H₂₁FN₂NaO₃ [(M+Na)⁺], 415.1428; found, 415.1429.

9-(4-methylbenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1,2-*a*][1,3]diazepin-7-one (6e)

Yellow solid; Mp 202.0–203.8 °C; IR (KBr): 3445, 2940, 1722, 1618, 1541, 1437, 1265, 1151 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.75 (s, 3H, COCH₃), 1.87–2.06 (m, 4H, CH₂CH₂), 2.30 (s, 3H, ArCH₃), 2.32–2.37 (m, 1H, COCH₂), 2.56–2.61 (m, 1H, COCH₂), 3.46–3.52 (m, 2H, CH₂N), 3.71–3.73 (m, 1H, CH), 3.71–3.79 (m, 1H, NCH₂), 3.87–3.93 (m, 1H, NCH₂), 7.10–7.13 (m, 2H, ArH), 7.29–7.31 (m, 2H, ArH), 10.70 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 21.4, 24.8, 27.3, 30.0, 40.9, 41.1, 42.6, 43.2, 90.4, 126.5, 129.0, 138.9, 139.7, 165.1, 178.5, 184.9, 205.5; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₂₂N₂NaO₃[(M+Na)⁺], 349.1523; found, 349.1527.

9-benzoyl-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1,2-*a*][1,3]diazepin-7-one (6f)

Yellow solid; Mp 169.9–170.6 °C; IR (KBr): 3445, 2933, 1723, 1619, 1543, 1444, 1262, 1148 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.73 (s, 3H, COCH₃), 1.89–2.04 (m, 4H, CH₂CH₂), 2.24–2.30 (m, 1H, COCH₂), 2.55–2.60 (m, 1H, COCH₂), 3.49–3.53 (m, 2H, CH₂N), 3.68–3.69 (m, 1H, CH), 3.70–3.80 (m, 1H, NCH₂), 3.87–3.93 (m, 1H, NCH₂), 7.31–7.33 (m, 3H, ArH), 7.37–7.40 (m, 2H, ArH), 10.71 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 24.8, 27.3, 29.9, 40.8, 41.1, 42.6, 43.2, 90.4, 126.4, 128.5, 129.5, 141.7, 165.2, 178.5, 184.9, 205.4; HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₂₀N₂NaO₃ [(M+Na)⁺], 335.1366; found, 335.1369.

9-(4-chlorobenzoyl)-8-(2-oxopropyl)-1,2,3,4,5,8-hexahydro-7*H*-pyrrolo[1,2-*a*][1,3] diazepin-7-one (6g)

Yellow solid; Mp 242.3–243.5 °C; IR (KBr): 3452, 2943, 1727, 1619, 1543, 1267, 1152, 1089 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.78 (s, 3H, COCH₃), 1.88–2.07 (m, 4H, CH₂CH₂), 2.30–2.39 (m, 1H, COCH₂), 2.60–2.65 (m, 1H, COCH₂), 3.50–3.55 (m, 2H, CH₂N), 3.67–3.69 (m, 1H, CH), 3.75–3.81 (m, 1H, NCH₂), 3.88–3.94 (m, 1H, NCH₂), 7.29–7.32 (m, 2H, ArH), 7.31–7.37 (m, 2H, ArH), 10.76 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 24.7, 27.2, 30.0, 40.6, 41.1, 42.6, 43.3, 90.4, 128.0, 128.7, 135.5, 140.0, 165.5, 178.3, 183.0, 205.3; HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₉ClN₂NaO₃ [(M+Na)⁺], 369.0976; found, 369.0979.

Spectroscopic Data of Imidazo[1,2-a]-pyridines 7-8

Ethyl 5-hydroxy-8-(4-methoxybenzoyl)-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine-7-carboxylate (7a)

Yellow solid; Mp 80.5–81.9 °C; IR (KBr): 3427, 2971, 1729, 1599, 1384, 1247, 1168, 1027 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 0.93–0.96 (t, 3H, CCH₃), 2.25–2.27 (m, 2H, CH₂), 3.08–3.09 (m, 1H, CHCO), 3.42–3.47 (m, 2H, NCH₂), 3.50–3.53 (m, 1H, CH₂N), 3.73 (s, 3H, OCH₃), 3.76–3.80 (m, 1H, CH₂N), 3.78–3.85 (q, 2H, OCH₂), 6.19 (s, 1H, OH), 6.78–6.80 (m, 2H, ArH), 7.19–7.22 (m, 2H, ArH), 7.23–7.25 (m, 1H, ArH), 7.28–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.68 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): δ = 13.7, 39.0, 40.5, 41.8, 42.9, 55.3, 61.5, 82.3, 82.7, 113.4, 126.0, 128.1, 128.1, 128.6, 135.3, 142.6, 159.7, 161.2, 178.4, 189.9; HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₂₇N₂O₅ [(M+H)⁺], 423.1914; found, 429.1914.

Ethyl 8-(4-ethylbenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*] -pyridine-7-carboxylate (7b)

Yellow solid; Mp 91.0–91.9 °C; IR (KBr): 3291, 2968, 2353, 1728, 1599, 1512, 1387, 1169 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 0.83-0.95$ (t, 3H, CCH₃), 1.11–1.17 (t, 3H, CCH₃), 2.19–2.30 (m, 2H, CH₂), 2.54–2.60 (q, 2H, ArCH₂), 3.08–3.10 (t, 1H, CHCO), 3.42–3.53 (m, 2H, NCH₂), 3.51–3.65 (m, 1H, CH₂N), 3.74–3.78 (q, 2H, OCH₂), 3.80–3.87 (m, 1H, CH₂N), 6.16 (s, 1H, OH), 7.08–7.18 (m, 4H, ArH), 7.24–7.36 (m, 3H, ArH), 7.31–7.47 (m, 2H, ArH), 9.72 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 15.6, 28.7, 39.0, 40.4, 41.8, 42.9, 61.4, 82.4, 82.7, 126.0, 126.4, 127.5, 128.1, 128.6, 140.1, 142.6, 144.3, 161.2, 178.5, 190.5; HRMS (TOF ES⁺): m/z calcd for C₂₅H₂₉N₂O₄ [(M+H)⁺], 421.2122; found, 421.2123.

Ethyl 5-hydroxy-8-(4-methylbenzoyl)-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine-7-carboxylate (7c)

Orange solid; Mp 95.0–96.3 °C; IR (KBr): 3287, 2975, 2352, 1727, 1588, 1512, 1386, 1170 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 0.92-0.96$ (t, 3H, CCH₃), 2.24–2.25 (d, 2H, CH₂), 2.27 (s, 3H, CCH₃), 3.07–3.12 (m, 1H, CHCO), 3.43–3.51 (m, 2H, NCH₂), 3.54–3.61 (m, 1H, CH₂N), 3.73–3.75 (q, 2H, OCH₂), 3.79–3.87 (m, 1H, CH₂N), 6.16 (s, 1H, OH), 7.06–7.08 (m, 2H, ArH), 7.12–7.14 (m, 2H, ArH), 7.24–7.26 (m, 1H, ArH), 7.29–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.71 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 21.3, 39.0, 40.4, 41.8, 42.9, 61.5, 82.3, 82.7, 126.0, 126.4, 128.1, 128.6, 128.7, 138.0, 139.9, 142.6, 161.2, 178.6, 190.5; HRMS (TOF ES⁺): *m/z* calcd for C₂₄H₂₆N₂NaO₄ [(M+Na)⁺], 429.1785; found, 429.1785.

Ethyl 8-benzoyl-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine-7-carboxylate (7d)

Red solid; Mp 84.9–85.7 °C; IR (KBr): 3288, 2979, 1729, 1600, 1513, 1387, 1168, 1024 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 0.91-0.94$ (t, 3H, CCH₃), 2.23–2.26 (d, 2H, CH₂), 3.07–3.12 (m, 1H, CHCO), 3.42–3.56 (m, 2H, NCH₂), 3.58–3.61 (m, 1H, CH₂N), 3.70–3.75 (q, 2H, OCH₂), 3.77–3.87 (m, 1H, CH₂N), 6.17 (s, 1H, OH), 7.18–7.25 (m, 6H, ArH), 7.29–7.33 (m, 2H, ArH), 7.45–7.47 (m, 2H, ArH), 9.70 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 38.9, 40.4, 41.8, 42.9, 61.5, 82.4, 82.7, 126.0, 126.4, 128.1, 128.2, 128.3, 128.6, 142.6, 142.7, 161.3, 178.5, 190.2; HRMS (TOF ES⁺): *m/z* calcd for C₂₃H₂₅N₂O₄ [(M+H)⁺], 393.1809; found, 393.1806.

Ethyl 8-(4-bromobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine-7-carboxylate (7e)

Yellow solid; Mp 200.9–202.5 °C; IR (KBr): 3295, 2974, 2887, 1694, 1591, 1515, 1398, 1226 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 0.96-0.99$ (t, 3H, CCH₃), 2.26–2.28 (d, 2H, CH₂), 3.11–3.14 (m, 1H, CHCO), 3.46–3.57 (m, 2H, NCH₂), 3.59–3.70 (q, 2H, OCH₂), 3.79–3.91 (m, 2H, CH₂N), 6.17 (s, 1H, OH), 7.12–7.19 (m, 2H, ArH), 7.26–7.35 (m, 3H, ArH), 7.41–7.48 (m, 4H, ArH), 9.71 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 38.8, 40.3, 41.8, 42.9, 61.7, 82.2, 82.7, 122.3, 126.0, 128.1, 128.2, 128.6, 131.3, 141.5, 142.4, 161.3, 178.4, 188.7; HRMS (TOF ES⁺): *m/z* calcd for C₂₃H₂₄BrN₂O₄ [(M+H)⁺], 471.0914; found, 471.0913.

Ethyl 8-(4-chlorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine-7-carboxylate (7f)

White solid; Mp 190.5–192.4 °C; IR (KBr): 3302, 2977, 2885, 1695, 1593, 1398, 1226, 1022 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 1.02-1.06$ (t, 3H, CCH₃), 2.33–2.35 (d, 2H, CH₂), 3.17–3.22 (m, 1H, CHCO), 3.53–3.69 (m, 2H, NCH₂), 3.71–3.78 (q, 2H, OCH₂), 3.86–3.98 (m, 2H, CH₂N), 6.24 (s, 1H, OH), 7.26–7.27 (m, 3H, ArH), 7.32–7.34 (m, 2H, ArH), 7.35–7.42 (m, 2H, ArH), 7.53–7.55 (m, 2H, ArH), 9.79 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 38.9, 40.3, 41.8, 42.9, 61.7, 82.2, 82.7, 126.0, 128.0, 128.2, 128.3, 128.6, 134.1, 141.1, 142.5, 161.3, 178.4, 188.8; HRMS (TOF ES⁺): *m*/*z* calcd for C₂₃H₂₄ClN₂O₄ [(M+H)⁺], 427.1419; found, 427.1417.

Ethyl 8-(4-fluorobenzoyl)-5-hydroxy-5-phenyl-1,2,3,5,6,7-hexahydroimidazo-[1,2-*a*]pyridine-7-carboxylate (7g)

Yellow solid; Mp 115.6–117.8 °C; IR (KBr): 3256, 2976, 1730, 1590, 1510, 1381, 1162, 1026 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 0.93-0.97$ (t, 3H, CCH₃), 2.25–2.26 (d, 2H, CH₂), 3.07–3.12 (m, 1H, CHCO), 3.43–3.54 (m, 2H, NCH₂), 3.56–3.69 (q, 2H, OCH₂), 3.77–3.90 (m, 2H, CH₂N), 6.17 (s, 1H, OH), 6.93–6.97 (m, 2H, ArH), 7.21–7.24 (m, 3H, ArH), 7.26–7.33 (m, 2H, ArH), 7.44–7.46 (m, 2H, ArH), 9.67 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.7$, 38.9, 40.4, 41.8, 42.9, 61.6, 82.3, 82.7, 114.9 (J = 21.3 Hz), 115.1 (J = 21.3 Hz), 126.0, 128.2, 128.4 (J = 8.1 Hz), 128.5 (J = 8.1 Hz), 128.6, 138.7 (J = 2.9 Hz), 138.8 (J = 2.9 Hz), 142.5, 161.3, 161.3 (J = 249.9 Hz), 163.8 (J = 249.9 Hz), 178.3, 188.9; HRMS (TOF ES⁺): m/z calcd for C₂₃H₂₃FN₂NaO₄ [(M+Na)⁺], 433.1534; found, 433.1533.

Ethyl 5-hydroxy-8-nitro-5-phenyl-1,2,3,5,6,7-hexahydroimidazo[1,2-*a*]pyridine-7-carboxylate (7h)

Yellow solid; Mp 193.9–194.6 °C; IR (KBr): 3335, 2978, 2354, 1684, 1501, 1253, 1129, 1018 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): $\delta = 1.24-1.27$ (t, 3H, CCH₃), 2.25–2.42 (m, 2H, CH₂), 3.17–3.22 (m, 1H, CHCO), 3.51–3.66 (m, 2H, NCH₂), 3.70–3.73 (q, 1H, OCH₂), 4.04–4.07 (q, 1H, OCH₂), 4.19–4.23 (m, 2H, CH₂N), 5.52 (s, 1H, OH), 7.28–7.36 (m, 3H, ArH), 7.44–7.46 (m, 2H, ArH), 8.87 (br, 1H, NH); ¹³C NMR (100 MH_Z, CDCl₃): $\delta = 13.0$, 38.0, 38.3, 41.2, 43.1, 61.4, 82.4, 102.3, 124.9, 127.6, 127.7, 139.9, 156.6, 175.7; HRMS (TOF ES⁺): *m*/*z* calcd for C₁₆H₁₉N₃NaO₅ [(M+Na)⁺], 356.1217; found, 356.1217.

Methyl 8-benzoyl-5-methyl-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine-7-carboxylate (8a)

Yellow solid; Mp 200.9–201.4 °C; IR (KBr): 3234, 2954, 2897, 1739, 1530, 1473, 1157, 1014 cm⁻¹; ¹H NMR (400 MH_Z, CDCl₃): δ = 1.82 (s, 3H, CCH₃), 3.39 (s, 3H, OCH₃), 3.65–3.78 (m, 4H, CH₂CH₂), 4.01–4.02 (m, 1H, NCH), 4.58–4.60 (m, 1H, CCH), 7.16–7.20 (m, 2H, ArH), 7.22–7.25 (m, 3H, ArH), 9.32 (br, 1H, NH); ¹³C NMR (100 MHZ, CDCl₃): δ = 17.0, 41.5, 41.7, 43.6, 50.8, 81.7, 98.1, 125.0, 127.1, 127.3, 132.4, 141.3, 157.3, 173.7, 191.3; HRMS (TOF ES⁺): *m/z* calcd for C₁₇H₁₈N₂NaO₃ [(M+Na)⁺], 321.1210; found, 321.1208.

Methyl 8-(4-chlorobenzoyl)-5-methyl-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine-7 -carboxylate (8b)

Yellow solid; Mp 180.3–181.1 °C; IR (KBr): 3236, 2898, 1733, 1605, 1472, 1328, 1223, 1090 cm⁻¹; ¹H NMR (400 MH_z, CDCl₃): $\delta = 1.83$ (s, 3H, CCH₃), 3.41 (s, 3H, OCH₃), 3.65–3.78 (m, 4H, CH₂CH₂), 3.96–3.98 (m, 1H, NCH), 4.60–4.62 (m, 1H, CCH), 7.12–7.14 (m, 2H, ArH), 7.19–7.23 (m, 3H, ArH), 9.30 (br, 1H, NH); ¹³C NMR (100 MH_z, CDCl₃): $\delta = 16.9$, 41.3, 41.7, 43.6, 50.9, 81.6, 98.0, 126.6, 127.3, 132.4, 133.2, 139.7, 157.4, 173.5, 189.7; HRMS (TOF ES⁺): m/z calcd for C₁₇H₁₇ClN₂NaO₃ [(M+Na)⁺], 355.0820; found, 355.0825.

X-ray Structure and Data² of 5e

Figure S1 X-Ray crystal structure of 5e

Table 51	Crystal data and structure refinement for se
Empirical formula	$C_{23}H_{21}C_{12}FN_2O_3$
Formula weight	463.32
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, P 21/c
Unit cell dimensions	a = 9.9049(18) A alpha = 90 deg.
	b = 24.490(4) A beta $= 96.040(3) deg.$
	c = 8.7934(16) A gamma = 90 deg.
Volume	2121.2(7) A^3
Z, Calculated density	4, 1.451 Mg/m^3
Absorption coefficient	0.344 mm^-1
F(000)	960
Crystal size	1.35 x 0.40 x 0.20 mm
Theta range for data collection	n 1.66 to 28.00 deg.
Limiting indices	-13<=h<=13, -32<=k<=32, -11<=l<=11
Reflection collected/unique	19828 / 5114 [R(int) = 0.0344]
Completeness to theta $= 28.2$	99.9%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	5114 / 0 / 280
Goodness-of-fit on F^2	1.034
Final R indices [I>2sigma(I)]	R1 = 0.0706, $wR2 = 0.1748$
R indices (all data)	R1 = 0.0869, wR2 = 0.1877
Largest diff. peak and hole	1.458 and -1.284 e.A^-3

 Table S1
 Crystal data and structure refinement for 5e

Table S2	Bond lengths [A] and angles [deg] for 5e
Cl(1)-C(23)	1.752(4)
Cl(2)-C(23)	1.735(4)
F(1)-C(1)	1.363(3)
O(1)-C(9)	1.220(3)
O(2)-C(20)	1.220(3)
O(3)-C(5)	1.260(3)
N(1)-C(16)	1.321(3)
N(1)-C(17)	1.460(3)
N(1)-H(1)	0.8800
N(2)-C(20)	1.378(3)
N(2)-C(16)	1.385(3)
N(2)-C(19)	1 465(3)
C(1)-C(14)	1.377(4)
C(1) - C(2)	1 378(4)
C(2) - C(3)	1 396(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1 399(3)
C(3)-H(3)	0.9500
C(4)-C(15)	1 393(3)
C(4)-C(5)	1 501(3)
C(5)-C(6)	1.408(3)
C(6)-C(16)	1 403(3)
C(6)-C(7)	1 517(3)
C(7)-C(20)	1 523(3)
C(7)-C(8)	1.532(3)
C(7)-H(7)	1.0000
C(8)-C(9)	1.512(3)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.498(3)
C(10)-C(11)	1.396(4)
C(10)-C(22)	1.397(4)
C(11)-C(12)	1.389(4)
C(11)-H(11)	0.9500
C(12)-C(13)	1.393(4)
C(12)-H(12)	0.9500
C(13)-C(21)	1.384(4)
C(13)-H(13)	0.9500
C(14)-C(15)	1.389(3)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
C(17)-C(18)	1.523(4)
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(18)-C(19)	1.521(4)
C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900
С(19)-Н(19А)	0.9900
C(19)-H(19B)	0.9900
C(21)-C(22)	1.393(4)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(16)-N(1)-C(1)	(1) 123.2(2)
C(16)-N(1)-H(1)) 118.4

Table S? Bond longths [A] and angles [deg] for

C(17)-N(1)-H(1)	118.4	
C(20)-N(2)-C(16)	110.82(19)	
C(20)-N(2)-C(19)	125.5(2)	
C(16)-N(2)-C(19)	123.5(2)	
F(1)-C(1)-C(14)	118.6(2)	
F(1)-C(1)-C(2)	118.1(2)	
C(14)-C(1)-C(2)	123 3(2)	
C(1) - C(2) - C(3)	118 2(2)	
C(1) - C(2) - H(2)	120.9	
C(1) - C(2) - H(2) C(2) - C(2) - H(2)	120.0	
$C(3) - C(2) - \Pi(2)$	120.9	
C(2) - C(3) - C(4)	120.3(2)	
C(2)-C(3)-H(3)	119.9	
C(4)-C(3)-H(3)	119.9	
C(15)-C(4)-C(3)	119.2(2)	
C(15)-C(4)-C(5)	118.0(2)	
C(3)-C(4)-C(5)	122.8(2)	
O(3)-C(5)-C(6)	121.7(2)	
O(3)-C(5)-C(4)	117.1(2)	
C(6)-C(5)-C(4)	121.1(2)	
C(16)-C(6)-C(5)	120.7(2)	
C(16)-C(6)-C(7)	107.1(2)	
C(5)-C(6)-C(7)	131.6(2)	
C(6)-C(7)-C(20)	102.85(18)	
C(6)-C(7)-C(8)	119.22(19)	
C(20)-C(7)-C(8)	111.70(19)	
C(6)-C(7)-H(7)	107.5	
C(20)-C(7)-H(7)	107.5	
C(8)-C(7)-H(7)	107.5	
C(9)-C(8)-C(7)	112.64(19)	
C(9)-C(8)-H(8A)	109.1	
C(7)-C(8)-H(8A)	109.1	
C(9)-C(8)-H(8B)	109.1	
C(7)-C(8)-H(8B)	109.1	
H(8A)-C(8)-H(8B)	107.8	
O(1)-C(9)-C(10)	121 5(2)	
O(1) - C(9) - C(8)	120 3(2)	
C(1) = C(3) = C(3)	118 2(2)	
C(11) - C(10) - C(22)	119.8(2)	
C(11)-C(10)-C(22) C(11)-C(10)-C(9)	118.1(2)	
C(11) - C(10) - C(3) C(22) - C(10) - C(0)	1220(2)	
C(22) = C(10) = C(3) C(12) = C(11) = C(10)	110 9(3)	
C(12)-C(11)-C(10) C(12)-C(11) $U(11)$	120.1	
$C(12)$ - $C(11)$ - $\Pi(11)$ $C(10)$ $C(11)$ $\Pi(11)$	120.1	
$C(10)-C(11)-\Pi(11)$ C(11) C(12) C(12)	120.1 120 1(3)	
C(11) - C(12) - C(13) C(11) - C(12) - U(12)	120.1(3)	
C(11)-C(12)-H(12) C(12)-C(12)-H(12)	117.7	
C(13)-C(12)-H(12)	119.9	
C(21)-C(13)-C(12)	120.2(3)	
C(21)-C(13)-H(13)	119.9	
C(12)-C(13)-H(13)	119.9	
C(1)-C(14)-C(15)	117.8(2)	
C(1)-C(14)-H(14)	121.1	
C(15)-C(14)-H(14)	121.1	
C(14)-C(15)-C(4)	121.2(2)	
C(14)-C(15)-H(15)	119.4	
C(4)-C(15)-H(15)	119.4	
N(1)-C(16)-N(2)	119.5(2)	
N(1)-C(16)-C(6)	129.5(2)	

N(2)-C(16)-C(6)	110.9(2)	_
N(1)-C(17)-C(18)	109.8(2)	
N(1)-C(17)-H(17A)	109.7	
C(18)-C(17)-H(17A)	109.7	
N(1)-C(17)-H(17B)	109.7	
C(18)-C(17)-H(17B)	109.7	
H(17A)-C(17)-H(17B)	108.2	
C(19)-C(18)-C(17)	110.3(2)	
C(19)-C(18)-H(18A)	109.6	
C(17)-C(18)-H(18A)	109.6	
C(19)-C(18)-H(18B)	109.6	
C(17)-C(18)-H(18B)	109.6	
H(18A)-C(18)-H(18B)	108.1	
N(2)-C(19)-C(18)	108.4(2)	
N(2)-C(19)-H(19A)	110.0	
C(18)-C(19)-H(19A)	110.0	
N(2)-C(19)-H(19B)	110.0	
C(18)-C(19)-H(19B)	110.0	
H(19A)-C(19)-H(19B)	108.4	
O(2)-C(20)-N(2)	124.6(2)	
O(2)-C(20)-C(7)	127.3(2)	
N(2)-C(20)-C(7)	108.06(19)	
C(13)-C(21)-C(22)	120.0(3)	
C(13)-C(21)-H(21)	120.0	
C(22)-C(21)-H(21)	120.0	
C(21)-C(22)-C(10)	119.9(3)	
C(21)-C(22)-H(22)	120.0	
C(10)-C(22)-H(22)	120.0	
Cl(2)-C(23)-Cl(1)	111.9(2)	
Cl(2)-C(23)-H(23A)	109.2	
Cl(1)-C(23)-H(23A)	109.2	
Cl(2)-C(23)-H(23B)	109.2	
Cl(1)-C(23)-H(23B)	109.2	
H(23A)-C(23)-H(23B)	107.9	

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA) <(DH	A)
C(17)-H(17B)O(3)	0.97	1.98	2.387(12)	102.7
C(15)-H(15)F(1)	0.98	2.51	2.872(4)	101.7
O(2)-H(2)O(5)	0.82	1.94	2.753(3)	169.6
N(1)-H(1)O(1)	0.86	2.04	2.607(4)	123.1

Table S3. Hydrogen bonds for **5e** [A and deg.].

Symmetry transformations used to generate equivalent atoms:

X-ray Structure and Data² of 7e

Figure S2 X-Ray crystal structure of 7e

Table S4	Table S4Crystal data and structure refinement for 7e		
Empirical formula	$C_{27} H_{25} C l_3 F_3 N_3 O_5$		
Formula weight	634.85		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system, space group	Triclinic, P-1		
Unit cell dimensions	a = 10.489(5) A alpha = 73.462(5) deg.		
	b = 11.635(5) A beta $= 80.503(5) deg.$		
	c = 13.375(5) A gamma = 72.854(5) deg.		
Volume	1489.3(11) A^3		
Z, Calculated density	2, 1.416 Mg/m^3		
Absorption coefficient	0.367 mm^-1		
F(000)	652		
Crystal size	0.23x 0.19 x 0.14 mm		
Theta range for data collection	1.89 to 26.31 deg.		
Limiting indices	-12<=h<=13, -15<=k<=15, -17<=l<=17		
Reflection collected/unique	10468/6121[R(int) = 0.0656]		
Completeness to theta $= 28.2$	96.6%		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9745 and 0.9532		
Refinement method	Full-matrix least-squares on F^2		
Data/restraints/parameters	6121/ 0/ 374		
Goodness-of-fit on F^2	1.028		
Final R indices [I>2sigma(I)]	R1 = 0.1239, $wR2 = 0.3167$		
R indices (all data)	R1 = 0.2712, $wR2 = 0.4173$		
Extinction coefficient	0.010(5)		
Largest diff. peak and hole	0.689 and -0.735 e.A^-3		

Table S5	Bond lengths [A] and angles [deg] for 7e
C(1)-O(1)	1.244(8)
C(1)-C(8)	1.390(9)
C(1)-C(2)	1.530(10)
C(2)-C(7)	1.371(10)
C(2)-C(3)	1.385(9)
C(3)-C(4)	1.369(10)
C(3)-H(3)	0.9300
C(4)-C(5)	1 352(11)
C(4)-H(4)	0.9300
C(5)-C(6)	1 405(12)
C(5) - H(5)	0.9300
C(6)-C(7)	1 355(12)
C(6)-E(7)	0.9300
C(7)-H(7)	0.9300
$C(7) - \Pi(7)$ C(8) - C(9)	1 403(10)
C(8) - C(10)	1 523(8)
C(0) - C(1)	1.323(8)
C(9)-N(1)	1.320(8)
C(9)-N(2)	1.559(8)
C(10)-N(1) C(10)-C(12)	1.404(9)
C(10)-C(12)	1.480(10)
C(10)-C(11)	1.503(10)
C(10)-H(10)	0.9800
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-N(2)	1.483(9)
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9/00
C(13)-O(2)	1.396(7)
C(13)-N(2)	1.444(8)
C(13)-C(14)	1.533(10)
C(13)-C(15)	1.534(10)
C(14)-F(3)	1.317(8)
C(14)-F(1)	1.328(10)
C(14)-F(2)	1.341(9)
C(15)-C(16)	1.506(9)
C(15)-C(19)	1.537(9)
C(15)-H(15)	0.9800
C(16)-O(3)	1.210(8)
C(16)-O(4)	1.321(8)
C(17)-C(18)	1.476(12)
C(17)-O(4)	1.477(8)
C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-C(26)	1.512(9)
C(19)-C(20)	1.577(9)
C(20)-O(5)	1.219(7)
C(20)-N(3)	1.332(8)
C(21)-C(22)	1.389(11)
C(21)-N(3)	1.399(8)
C(21)-C(26)	1.410(9)
C(22)-C(23)	1.385(12)
C(22)-H(22)	0.9300

Table S5 Dand langths [A] and analog [doc] f

	4.004/40
C(23)-C(24)	1.394(13)
C(23)-H(23)	0.9300
C(24)-C(25)	1.403(11)
C(24)-H(24)	0.9300
C(25)-C(26)	1.346(9)
C(25)-H(25)	0.9300
C(27)-Cl(3)	1.658(17)
C(27)-CI(2)	1.72(2)
C(27)-Cl(1)	1.85(2)
C(27)-H(27)	0.9800
N(1)-H(1)	0.8600
N(3)-H(3A)	0.8600
O(2)-H(2)	0.8200
O(1)-C(1)-C(8)	124.9(7)
O(1)-C(1)-C(2)	113.1(6)
C(8)-C(1)-C(2)	122.0(6)
C(7)-C(2)-C(3)	118.2(7)
C(7)-C(2)-C(1)	122.1(7)
C(3)-C(2)-C(1)	119.0(7)
C(4)-C(3)-C(2)	121.1(7)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4
C(5)-C(4)-C(3)	119.2(8)
C(5)-C(4)-H(4)	120.4
C(3)-C(4)-H(4)	120.4
C(4)-C(5)-C(6)	121.3(8)
C(4)-C(5)-H(5)	119.3
C(6)-C(5)-H(5)	119.3
C(7)-C(6)-C(5)	117.8(8)
C(7)-C(6)-H(6)	121.1
C(5)-C(6)-H(6)	121.1
C(6)-C(7)-C(2)	122.3(8)
C(6)-C(7)-H(7)	118.9
C(2)-C(7)-H(7)	118.9
C(1)-C(8)-C(9)	118.1(6)
C(1)-C(8)-C(19)	124.3(6)
C(9)-C(8)-C(19)	117.4(6)
N(1)-C(9)-N(2)	108.5(6)
N(1)-C(9)-C(8)	126.0(7)
N(2)-C(9)-C(8)	125.4(6)
N(1)-C(10)-C(12)	101.0(6)
N(1)-C(10)-C(11)	110.1(7)
C(12)-C(10)-C(11)	113.7(7)
N(1)-C(10)-H(10)	110.6
C(12)-C(10)-H(10)	110.6
C(11)-C(10)-H(10)	110.6
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
N(2)-C(12)-C(10)	103.4(6)
N(2)-C(12)-H(12A)	111.1
C(10)-C(12)-H(12A)	111.1
N(2)-C(12)-H(12B)	111.1
C(10) C(12) II(12D)	

H(12A)-C(12)-H(12B)	109.0	
O(2)-C(13)-N(2)	112.1(6)	
O(2)-C(13)-C(14)	104.2(6)	
N(2)-C(13)-C(14)	108.2(6)	
O(2)-C(13)-C(15)	114.5(6)	
N(2)-C(13)-C(15)	107.3(5)	
C(14)-C(13)-C(15)	110.5(6)	
F(3)-C(14)-F(1)	106.6(7)	
F(3)-C(14)-F(2)	105.4(7)	
F(1)-C(14)-F(2)	107.1(7)	
F(3)-C(14)-C(13)	112.5(7)	
F(1)-C(14)-C(13)	113.5(7)	
F(2)-C(14)-C(13)	111.2(7)	
C(16)-C(15)-C(13)	114.4(5)	
C(16)-C(15)-C(19)	110.4(5)	
C(13)-C(15)-C(19)	113.7(5)	
C(16)-C(15)-H(15)	105.9	
C(13)-C(15)-H(15)	105.9	
C(19)-C(15)-H(15)	105.9	
O(3)-C(16)-O(4)	123.3(7)	
O(3)-C(16)-C(15)	124.1(7)	
O(4)-C(16)-C(15)	112.5(6)	
C(18)-C(17)-O(4)	110.1(7)	
C(18) - C(17) - H(17A)	109.6	
O(4)-C(17)-H(17A)	109.6	
C(18)-C(17)-H(17B)	109.6	
O(4)-C(17)-H(17B)	109.6	
H(17A)-C(17)-H(17B)	108.2	
C(17)-C(18)-H(18A)	109.5	
C(17) - C(18) - H(18H)	109.5	
H(18A)-C(18)-H(18B)	109.5	
C(17)-C(18)-H(18C)	109.5	
H(18A)-C(18)-H(18C)	109.5	
H(18B)-C(18)-H(18C)	109.5	
C(26)-C(19)-C(8)	115 2(5)	
C(26) - C(19) - C(15)	108.1(5)	
C(8)-C(19)-C(15)	110.8(5)	
C(26) - C(19) - C(20)	100.7(6)	
C(8)-C(19)-C(20)	100.7(0) 110.2(5)	
C(15)-C(19)-C(20)	110.2(5) 111.4(5)	
O(5)-C(20)-N(3)	126 2(6)	
O(5)-C(20)-C(19)	120.2(0)	
N(3)-C(20)-C(19)	109 1(6)	
C(22)-C(21)-N(3)	129 5(7)	
C(22) = C(21) + C(26)	129.3(7) 120.2(8)	
N(3)-C(21)-C(26)	110 3(6)	
C(23)-C(22)-C(21)	118.4(8)	
C(23) - C(22) - C(21)	120.8	
C(23) C(22) H(22) C(21) - C(22) - H(22)	120.8	
C(22)- $C(22)$ - $C(24)$	121.9(9)	
C(22) - C(23) - H(23)	119.0	
C(24)- $C(23)$ - $H(23)$	119.0	
C(23)-C(24)-C(25)	117 9(8)	
C(23)-C(24)-C(25)	121.0	
C(25)-C(24)-H(24)	121.0	
$C(25) = C(27) = \Pi(27)$ C(26) = C(25) = C(24)	121.0	
C(26)-C(25)-C(24)	119 3	
(20) (20) (10) (10)		

C(24)-C(25)-H(25)	119.3	
C(25)-C(26)-C(21)	120.1(7)	
C(25)-C(26)-C(19)	131.5(7)	
C(21)-C(26)-C(19)	108.3(6)	
Cl(3)-C(27)-Cl(2)	110.5(16)	
Cl(3)-C(27)-Cl(1)	111.3(10)	
Cl(2)-C(27)-Cl(1)	103.2(7)	
Cl(3)-C(27)-H(27)	110.6	
Cl(2)-C(27)-H(27)	110.6	
Cl(1)-C(27)-H(27)	110.6	
C(9)-N(1)-C(10)	113.3(6)	
C(9)-N(1)-H(1)	123.4	
C(10)-N(1)-H(1)	123.4	
C(9)-N(2)-C(13)	120.5(6)	
C(9)-N(2)-C(12)	108.7(6)	
C(13)-N(2)-C(12)	123.5(6)	
C(20)-N(3)-C(21)	111.5(6)	
C(20)-N(3)-H(3A)	124.2	
C(21)-N(3)-H(3A)	124.2	
C(13)-O(2)-H(2)	109.5	
C(16)-O(4)-C(17)	117.8(5)	
 ĩ		

Symmetry transformations used to generate equivalent atoms:

 Table S6.
 Hydrogen bonds for 7e [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
C(15)-H(15)F(2)	0.98	2.54	2.902(8)	101.6	
C(12)-H(12A)F(1)	0.97	2.39	2.795(9)	104.8	
C(6)-H(6)O(2)#1	0.93	2.49	3.400(10)	165.4	
N(3)-H(3A)O(5)#2	0.86	2.05	2.853(7)	155.4	
O(2)-H(2)F(3)	0.82	2.35	2.767(7)	112.6	
N(1)-H(1)O(1)#3	0.86	2.10	2.867(8)	148.4	
N(1)-H(1)O(1)	0.86	2.05	2.623(8)	123.2	

Symmetry transformations used to generate equivalent atoms: #1 x+1,y,z #2 -x,-y+1,-z #3 -x,-y+1,-z+1

Figure 5. ¹H NMR (400 MHZ, CDCl₃) spectra of compound **5c**

Figure 15. ¹H NMR (400 MHZ, CDCl₃) spectra of compound **5h**

Figure 45. ¹H NMR (400 MHZ, CDCl₃) spectra of compound **7f**

References and Notes

- 1. (a) Huang, Z.-T.; Wang, M.-X. Synthesis 1992, 12, 1273–1276. (b) Li, Z.-J.; Charles, D. Synth. Commun. 2001, 31, 527–533.
- 2. CCDC 1052283 contain the supplementary crystallographic data for compound **5e**. CCDC 1052294 contain the supplementary crystallographic data for compound **7e**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.