Supporting information

Comprehensive chemical analysis of triterpenoids and polysaccharides in the medicinal mushroom *Antrodia cinnamomea*

Xue Qiao^a, Wei Song^a, Qi Wang^a, Ke-di Liu^a, Zheng-xiang Zhang^c, Tao Bo^c, Ren-yong Li^d, Li-na Liang^d, Yew-min Tzeng^e, De-an Guo^{a,b}, Min Ye^{a,b,*}

Affiliations:

- ^a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
- ^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- ^cAgilent Technologies, 3 Wangjing North Road, Beijing 100102, China
- ^d ThermoFisher Scientific Ltd., 8 Caihefang Road, Beijing 100085, China
- ^e Institute of Biochemical Sciences and Technology, Chaoyang University of Technology, Taichung 41349, Taiwan
- *. Corresponding author. Tel./fax: +86 10 82801516.
- E-mail address: yemin@bjmu.edu.cn (M. Ye).

Table of content

Table 1S. Intra-day, inter-day, intra-batch, and storage variation of the UPLC/UV method to determine triterpenoids.

Table 2S. Linearity range of monosaccharides by using IC/PAD.

 Table 3S. Contents of 7 monosaccharides in hydrolyzed products of A. cinnamomea

 samples.

Figure 1S. Chemical structurs and extracted ion chromatograms of norergostanes, sesquiterpenoid, cyclohexenones in the extracts of *A*. *cinnamomea* fruiting bodies.

Figure 2S. (-)-ESI-MS/MS spectra of ergostanes E32 and E5.

Figure 3S. (-)-ESI MS/MS spectra of 6 lanostane authentic references and two unknown lanostanes (L2, L6).

Figure 4S. Effect of different stationary phases (270 nm).

Figure 5S. Effect of different column temperatures.

Figure 6S. Effect of background subtraction to the chromatogram of S10 at 198 nm.

	E1	E2	E16	E17	L1	L3	L5	L9	E22	E23	E29	E30	L10
Intra-day variation (n=6)													
Peak area	107802	176893	141269	87291	196619	358305	14707	284386	197282	291089	187563	124831	188
RSD (%)	0.73	0.72	0.80	0.70	0.86	0.94	1.80	0.97	0.77	0.81	0.80	0.81	4.85
Inter-day variation (n=3)													
Peak area	110082	180845	141054	89433	201335	367158	15431	290381	202972	299605	192056	127744	197
RSD (%)	0.28	0.22	1.15	0.38	0.38	0.39	0.66	0.57	1.42	2.12	1.95	1.59	1.93
Intra-batch variation (n=6)													
Peak area	107243	175141	137276	83411	191592	349150	15100	279784	195725	289118	185250	123855	195
RSD (%)	0.91	0.90	2.43	2.82	2.57	2.32	2.93	1.83	4.04	3.77	3.17	3.86	4.51
Stability (n=6)													
Peak area	109611	179930	141449	88925	200286	362297	15167	284140	202444	299171	192622	127047	202
RSD (%)	1.32	1.33	1.06	1.47	1.70	2.39	4.03	1.45	2.56	3.15	4.18	3.02	2.77

Table 1S. Intra-day, inter-day, intra-batch, and storage variation of the UPLC/UV method to determine triterpenoids.

Sugar	Curve	R ²	Range (µ	ıg/mL)	LOQ
fuc	y = 0.817x + 0.284	0.999	1.0	20.0	0.02
ara	y = 1.216x + 0.571	0.999	1.0	20.0	0.03
gal	y = 1.495x + 1.229	0.998	1.0	40.0	0.04
glu	y = 1.730x + 1.513	0.999	1.0	40.0	0.07
xyl	y = 1.892x + 0.674	0.999	1.0	20.0	0.08
man	y = 1.226x + 0.480	0.998	1.0	20.0	0.14
fru	y = 0.901x + 0.293	0.999	1.0	20.0	0.31

Table 2S. Linearity range of monosaccharides by using IC/PAD.

gal, D-galactose; *glu*, D-glucose; *fru*, L-fructose; *ara*, L-arabinose; *xyl*, D-xylose; *man*, D-mannose; *fuc*, L-fucose. LOQ, limit of quantitation, referring to the concentration when the signal-to-noise ratio equals to 10.

No.	Polysacchride composition (mg/g)									
	fuc	ara	gal	glu	xyl	man	fru	Sum		
Wood culture, f	ruiting bod	ies								
S1	ND	ND	0.24	2.93	ND	ND	ND	3.2		
S2	0.23	ND	36.01	95.10	4.20	8.24	ND	143.8		
S3	0.04	ND	0.75	5.84	BL	BL	ND	6.7		
S10	0.31	ND	1.02	4.93	BL	BL	ND	6.3		
S11	ND	ND	2.01	11.88	0.35	1.27	ND	15.5		
Wood culture, mycelia										
S4	1.26	ND	8.54	14.77	1.82	1.10	ND	27.5		
S5	1.22	ND	7.95	14.02	1.53	0.97	ND	25.7		
S 6	1.04	6.87	26.16	58.51	13.33	15.09	16.11	137.1		
S12	2.82	ND	4.21	33.89	1.69	2.99	1.62	47.2		
Dish culture										
S13	1.30	ND	16.86	74.49	1.44	4.79	21.07	120.0		
S14	1.32	ND	10.84	34.32	BL	2.63	13.07	62.3		
Solid support culture (commercial)										
S9	0.58	13.88	19.40	51.36	16.00	10.54	8.29	120.0		
S15	ND	24.91	20.44	147.19	33.55	23.34	18.43	267.9		
Submerged fermentation (commercial)										
S 7	4.65	48.04	119.82	108.38	48.46	41.08	46.24	416.7		
S 8	ND	1.38	5.14	12.66	1.85	1.35	1.85	24.2		

 Table 3S. Contents of 7 monosaccharides in hydrolyzed products of A. cinnamomea

samples.

gal, D-galactose; *glu*, D-glucose; *fru*, L-fructose; *ara*, L-arabinose; *xyl*, D-xylose; *man*, D-mannose; *fuc*, L-fucose. BL, below the limit of quantitation (S/N=10), ND, not detected.

Figure 1S. Chemical structures and extracted ion chromatograms of norergostanes, sesquiterpenoid, cyclohexenones in *A. cinnamomea*.

Figure 2S. (-)-ESI-MS/MS spectra of ergostanes E32 and E5.

Figure 3S. (-)-ESI MS/MS spectra of 6 lanostane authentic references and two unknown lanostanes (L2, L6).

Figure 4S. Effect of different stationary phases (270 nm).

Figure 5S. Effect of different column temperatures.

Figure 6S. Effect of background subtraction to the chromatogram of S10 at 198 nm.