Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

**Supporting information** 

## Supramolecular Hydrogels of α-cyclodextrin/Reverse poloxamines/Carbon-based Nanomaterials and Its Multi-functional Application

Jinglin Shen<sup>a</sup>, Guiying Xu<sup>a, b</sup>, Xia Xin<sup>a, b\*</sup>, Lin Wang<sup>a</sup>, Zhaohua Song<sup>a</sup>, Han Zhang<sup>a</sup>, Lu Tong<sup>a</sup>,

Zewen Yang<sup>a</sup>

<sup>a</sup> Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Shanda nanlu

No. 27, Jinan, 250100, P. R. China

<sup>b</sup> National Engineering Technology Research Center for Colloidal Materials, Shandong University, Shanda nanlu

No. 27, Jinan, 250100, P. R. China

<sup>&</sup>lt;sup>\*</sup>Author to whom correspondence should be addressed, E-mail: <u>xinx@sdu.edu.cn</u>.

Phone: +86-531-88363597. Fax: +86-531-88361008



Figure S1 The chemical structure of T90R4 (Mw=7200 g mol<sup>-1</sup>, n=18, m=16)



**Figure S2** (A) Photographs of five typical samples: 50 mg mL<sup>-1</sup> T90R4 with varied  $\alpha$ -CD concentrations: (a) 60, (b) 80, (c) 100, (d) 120, (e) 150 mg mL<sup>-1</sup>, respectively. The photos were taken after the samples were stored at 20.0 ± 0.1°C for two weeks. (B) photographs of samples with the concentration of 150mg mL<sup>-1</sup>  $\alpha$ -CD, 50 mg mL<sup>-1</sup> T90R4, (a) 0 mg mL<sup>-1</sup> GO, (b) 1 mg mL<sup>-1</sup> GO, (c) 3 mg mL<sup>-1</sup> GO, (d) 5 mg mL<sup>-1</sup> GO.



Figure S3 Raman spectra excited at 633 nm of water-dispersed 5mg mL<sup>-1</sup> GO and hybrid hydrogel.



**Figure S4** Rheological results of hydrogel with different concentration of T90R4 and fixed concentration of  $\alpha$ -CD at 100mg mL<sup>-1</sup>: (A) variation of  $\eta^*$  as a function of frequency and (B) variation of shear viscosity as a function of shear rate. Rheological results of hydrogel with different concentration of GO at fixed concentration of  $\alpha$ -CD, T90R4 of 100 mg mL<sup>-1</sup>, 50 mg mL<sup>-1</sup>, respectively: (C) variation of  $\eta^*$  as a function of frequency and (D) variation of shear viscosity as a

function of shear rate.



mehtyl violet (MV)

rhodamine 6G (R6G)





amino black 10B (AB10B)



Figure S6 Standard curve of dyes at  $\lambda_{max}$ 



**Figure S7** (A) A final state of hydrogel containing (a) 5, (b) 3, (c) 1, (d) 0 mg mL<sup>-1</sup> GO after fully adsorption of MB. (B)The dye of MB solution and the freeze-dried samples of 5 mg mL<sup>-1</sup> GO before and after adsorption: (a) 0.05 mmol L<sup>-1</sup> MB; (b) 0 min; (c) 60 min; (d) 120 min; (e) 240 min.



Figure S8. Structure of DOX



**Figure S9** Photographs of samples completely release of DOX after 50 h. (a)  $\alpha$ -CD, T90R4 of 100 mg mL<sup>-1</sup>, 25 mg mL<sup>-1</sup> at pH=2, (b)  $\alpha$ -CD, T90R4 of 100 mg mL<sup>-1</sup>, 25 mg mL<sup>-1</sup> and containing 0.5 mg mL<sup>-1</sup> GO at pH=2, (c)  $\alpha$ -CD, T90R4 of 100mg mL<sup>-1</sup>, 25 mg mL<sup>-1</sup> at pH=5. (d)  $\alpha$ -CD, T90R4 of 100 mg mL<sup>-1</sup>, 25 mg mL<sup>-1</sup> at pH=7.4.