Electronic Supplementary Information for

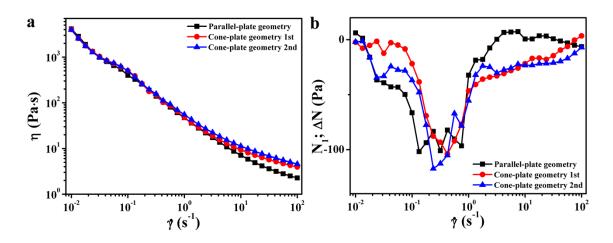
Impact of particle surface chemistry on the structure and rheological properties of graphene-based particle /polydimethylsiloxane composites

Ran Niu,^{a,b} Jiang Gong,^{a,b} Donghua Xu,^{a,*} Tao Tang^a and Zhao-Yan Sun^{a,*}

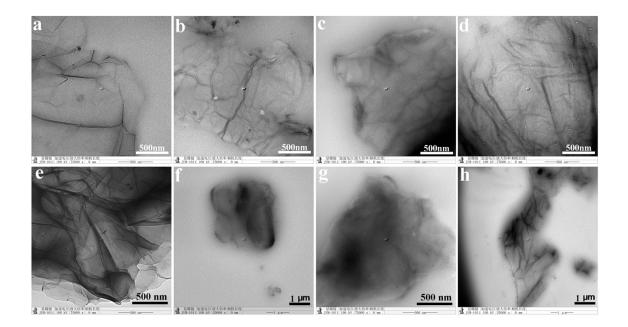
^a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

^b University of Chinese Academy of Sciences, Beijing 100039, P. R. China


*To whom correspondence should be addressed.

Tel.: +86 (0) 431 85262896.


Fax: +86 (0) 431 85262969.

E-mail: dhxu@ciac.ac.cn and zysun@ciac.ac.cn

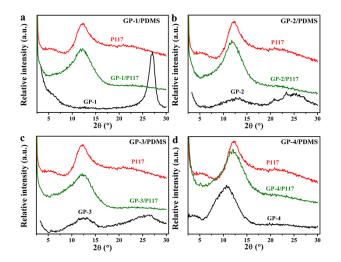

Fig. S1: Viscosity and normal stress of 9.1 wt % GP-4/P28 measured by different
geometries
Fig. S2: TEM images of 3.7 wt % graphene-based particle/P28 composites
Fig. S3: WAXD patterns of graphene-based particle/P117 composites4
Fig. S4: SAXS profiles of graphene-based particle/P117 composites4
Fig. S5: High resolution optical micrographs of 1.0 wt % graphene-based particle/P28 composites
Fig. S6: POM images of graphene-based particle/P117 composites5
Fig. S7: Frequency sweep results of graphene-based particle/P28 composites
Fig. S8: Linear fitting of plateau modulus versus reduced mass fraction for graphene- based particle/P28 composites
Fig. S9: Storage and loss muduli for 9.1 wt % graphene-based particle/P28 composites
Fig. S10: Detailed micrographs of vorticity aligned structure of composites
Fig. S11: Structures of 2.0 wt % samples under high shear rates
Fig. S12: Structure of 2.0 wt % graphene-based particle/P117 composites under weak shear
Fig. S13: Viscosity of 9.1 wt % graphene-based particle/P28 composites9
Fig. S14: Normal stress differences of 9.1 wt % graphene-based particle/P28
composites9
Fig. S15: Normal stress differences of 3.8 wt % GP-1/P28 and 3.8 wt % GP-4/P28
composites10
Fig. S16: Normal stress differences of 10.7 wt % graphene-based particle/P117
composites10
Fig. S17: Aggregate size distribution and Gaussian fitting of aggregate size histogram
of graphene-based particle/P28 suspensions11

Fig. S1. Viscosity and normal stress differences of 9.1 wt % GP-4/P28 suspension measured by parallel-plate and cone-plate geometries.

Fig. S2. TEM images of GP-1/P28 (a and e), GP-2/P28 (b and f), GP-3/P28 (c and g) and GP-4/P28 composites (d and h) with 3.7 wt % graphene-based particles.

Fig. S3. WAXD patterns of GP-1/P117 (a), GP-2/P117 (b) GP-3/P117 (c) and GP-4/P117 composites (d) with 7.4 wt % graphene-based particles. The curves are vertically shifted for clarity.

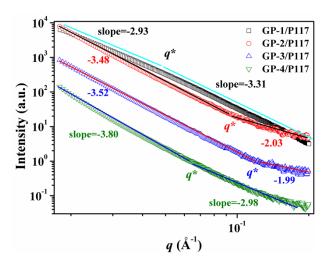


Fig. S4. SAXS profiles of 7.4 wt % graphene-based particle/P117 composites.

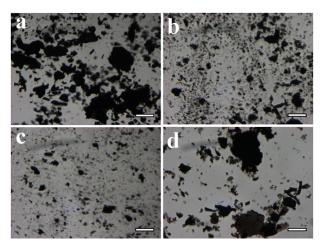
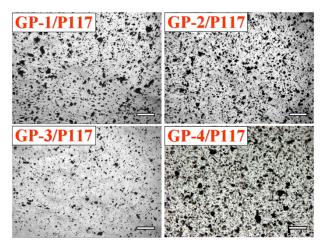
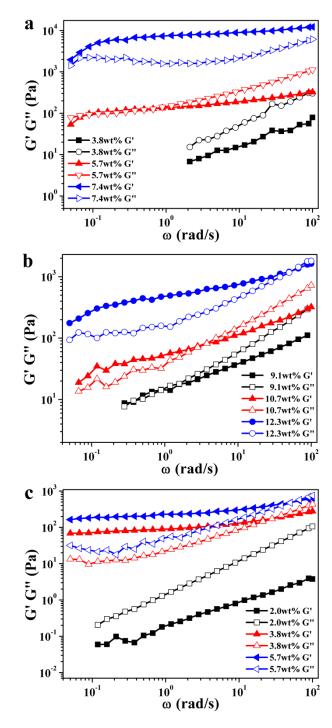
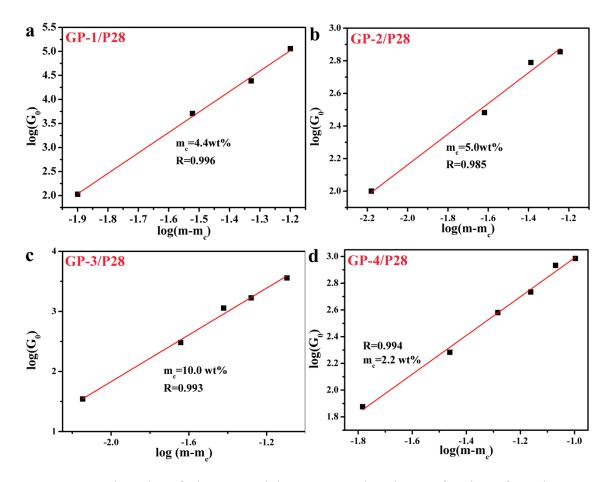


Fig. S5. High resolution optical micrographs of 1.0 wt % graphene-based particle/P28 composites. The scale bars are 30 μ m.

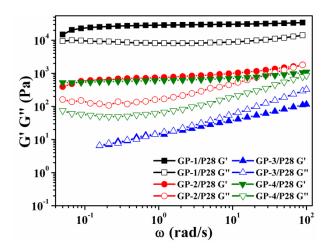
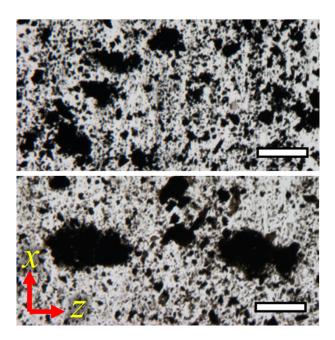
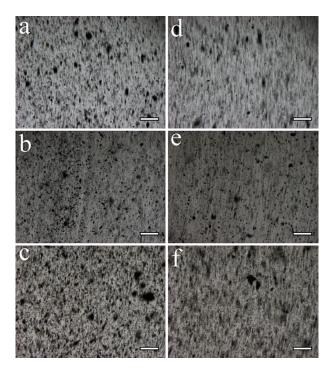
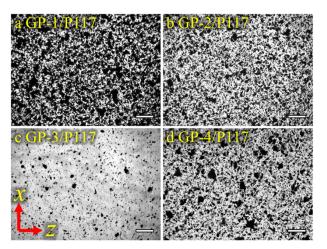

Fig. S6. Optical micrographs of 1.0 wt % graphene-based particle/P117 composites. The scale bars are $150 \ \mu m$.

Fig. S7. Frequency sweep results of GP-1/P28 (a), GP-3/P28 (b) and GP-4/P28 composites (c).

Fig. S8. Log-log plot of plateau modulus versus reduced mass fraction of graphenebased particle/P28 composites.

Fig. S9. Storage (*G*) and loss moduli (*G*") versus frequency (ω) for 9.1 wt % graphene-based particle/P28 composites.

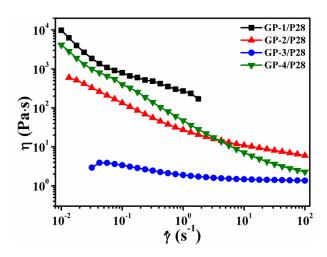

Fig. S10. Detailed micrographs of the vorticity aligned structure of graphene-based particle suspensions. The scale bars are 75 μ m.

Fig. S11. Structures of 2 wt % GP-2/P28 (a and d), 2 wt % GP-3/P28 (b and e) and 2 wt % GP-4/P28 composites (c and f) under a shear rate of 0.5 s⁻¹ (a, b and c) and 1 s⁻¹ (d, e and f). The gap is 150 μ m and the scale bars are 150 μ m. Photos are taken after shearing for about 40 s.

Fig. S12. Structures of 2.0 wt % graphene-based particle/P117 composites at a shear rate of 0.05 s⁻¹. The gap is 150 μ m and the scale bars are 150 μ m. Photos are taken after shearing for about 40 s.

Fig. S13. Viscosity (η) versus shear rate $(\not 8)$ for 9.1 wt % graphene-based particle/P28 composites.

Fig. S14. Normal stress differences (ΔN) versus shear rate for 9.1 wt % graphenebased particle/P28composites.

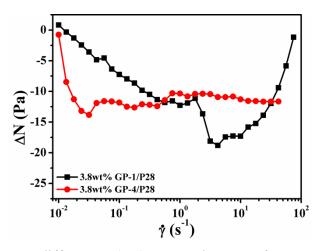


Fig. S15. Normal stress differences (ΔN) versus shear rate for 3.8 wt % GP-1/P28 and 3.8 wt % GP-4/P28 composites.

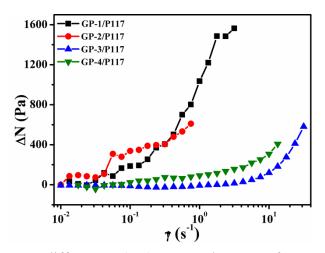
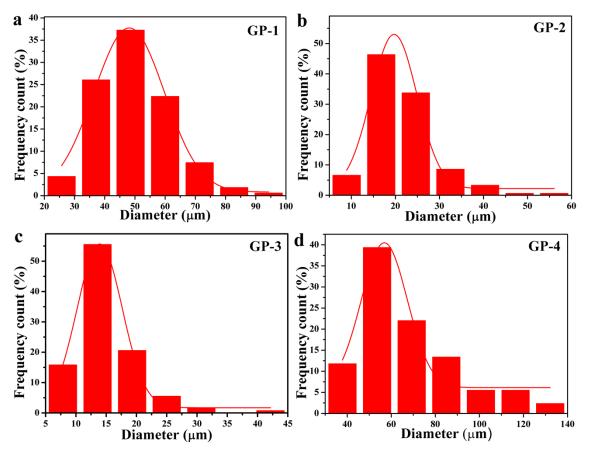



Fig. S16. Normal stress differences (ΔN) versus shear rate for 10.7 wt % graphene-

based particle/P117 composites.

Fig. S17. Diameter distribution and Gaussian fitting of the size of GP-1 (a), GP-2 (b), GP-3 (c) and GP-4 aggregates (d).