Supporting Information

Synthesis of polysubstituted 4-aminopyrazoles and 4-hydroxypyrazoles from vinyl azides and hydrazines

Wei Huang, Shen Liu, Binhui Chen, Xiao Guo , and Yongping Yu*

Institute of MateriaMedica, College of Pharmaceutical Sciences, Zhejiang University,

Hangzhou 310058, P. R. China

* To whom correspondence should be addressed

E-mail: <u>yyu@zju.edu.cn</u>

List of Contents

1.	General Information	S1
2.	General Procedure for the Synthesis of 3 and 4	S1
3.	Characterization Data of 3 and 4	S2-S6
4.	¹ H and ¹³ C NMR Spectra of 3	S7-S31
5.	NOESY Spectra of 3b	S31-S32
6.	X-ray sructure of 4d	S 32-S34

1. General Information:

All solvents were purified according to standard methods prior to use. Melting points were recorded on a BÜCHI B-540 melting point apparatus. NMR spectra were recorded for ¹H NMR at 500 MHz or 400 MHz and ¹³C NMR at 125 MHz . For ¹H NMR, tetramethylsilane (TMS) served as internal standard (δ =0) and data are reported as follows: chemical shift, integration, multiplicity (s=singlet, d=doublet, t= triplet, q=quartet, m=multiplet), and coupling constant(s) in Hertz. For ¹³C NMR, TMS (δ =0) or DMSO (δ =40.45) was used as internal standard and spectra were obtained with complete proton decoupling. LC-MS and HRMS data was obtained using Agilent Technologies 6224 TOF LC/MS. The starting materialvinyl azides **1** were prepared according to literature methods.¹ The starting material **2** were commercially available.

2. General Procedure for the Synthesis of 3 and 4:

Procedure for the Synthesis of 3:

A mixture of vinyl azides (0.4 mmol), hydrazines (wt 80%, 0.4 mmol), NaOH(0.8 mmol) was stirred in CH₃CN 2 mL at rt for 8 hours. After the completeness of the reaction, the reaction was diluted with water and extracted three times with ethyl acetate. The combined organic extracts were washed with brine, dried over Na2SO4, concentrated and purified by flash chromaraography (PE/EtOAC) on slica gel to afford 3a-3n.

Procedure for the Synthesis of 4:

A mixture of vinyl azides (0.4 mmol), hydrazine hydrate (4 mmol) ,NaOEt(0.8mmol) was stirred in CH₃CN 2 mL at rt for 5 hours. After the completeness of the reaction, the reaction was diluted with water and extracted three times with ethyl acetate. The combined organic extracts were washed with brine, dried over Na2SO4, concentrated and purified by flash chromaraography (DCM/MeOH) on slica gel to afford 4a-4l.

3. Characterization Data of 3 and 4:

Yellow solid; mp 80.4-81.1°C; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (m, 2H), 7.58 – 7.52 (m, 2H), 7.50 – 7.44 (m, 5H), 7.37 – 7.32 (m, 1H), 3.83 (s, 3H), 3.14 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 139.75, 133.49, 131.47, 129.66, 129.35, 129.19, 128.79, 128.41, 127.16, 126.70, 124.45, 37.58. HRMS (ESI) m/z calcd for C₁₆H₁₅N₃ [M+H]⁺:250.1344. Found: 250.1346.

Light yellow solid; mp 138.5-139.6 °C; ¹H NMR (500 MHz, DMSO) δ 7.82 (d, J = 7.2 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 3.80 (s, 2H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 139.97, 133.32, 132.43, 130.88, 130.20, 128.80, 128.62, 127.27, 126.73, 124.68, 122.61, 37.58. HRMS (ESI) m/z calcd for C₁₆H₁₄BrN₃ [M+H]⁺:328.0445. Found: 328.0447.

Yellow solid; mp 125.1-126.0 °C; ¹H NMR (500 MHz, DMSO) δ 7.84 – 7.79 (m, 2H), 7.63 – 7.58 (m, 2H), 7.56 – 7.51 (m, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 3.85 (s, 2H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 139.87, 134.46, 133.26, 130.63, 130.20, 129.50, 128.85, 128.06, 127.30, 126.72, 124.66, 37.60. HRMS (ESI) m/z calcd for C₁₆H₁₄ClN₃ [M+H]⁺:284.0955. Found: 284.0954.

Yellow solid; mp 1433.5-144.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.7 Hz, 2H), 7.30 (d, J = 7.4 Hz, 1H), 7.05 (d, J = 8.6 Hz, 2H), 3.87 (s, 3H), 3.78 (s, 3H), 3.01 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.68, 139.69, 133.68, 131.45, 130.75, 128.73, 127.05, 126.65, 124.29, 121.83, 114.63, 55.38, 37.40. HRMS (ESI) m/z calcd for C₁₇H₁₇N₃O [M+H]⁺:280.1453. Found: 280.1449.

Yellow solid; mp 91.5-92.4 °C; ¹H NMR (500 MHz, DMSO) δ 7.83 (d, J = 7.3 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 3.72 (s, 3H), 3.68 (s, 2H), 2.39 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 139.73, 138.36, 133.64, 131.59, 129.87, 129.25, 128.74, 127.07, 126.68, 124.35, 37.50, 21.35. HRMS (ESI) m/z calcd for C₁₇H₁₇N₃ [M+H]⁺:264. 1513.Found: 264.1511.

Liquid; ¹H NMR (500 MHz, DMSO) δ 7.74 (m, 2H), 7.37 (m, 2H), 7.23 (m, 1H), 3.75 (s, 3H), 3.59 (s, 2H), 3.24 – 3.05 (m, 1H), 1.30 (d, J = 7.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 140.92, 135.64, 133.55, 128.69, 127.05, 122.48, 37.46, 25.32, 20.62. HRMS (ESI) m/z calcd for C₁₃H₁₇N₃ [M+H]⁺:216. 1504.Found: 216.1505.

Orange solid ; mp 74.3.6-75.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.73 (m, 2H), 7.47 – 7.40 (m, 2H), 7.34 – 7.29 (m, 1H), 3.82 (s, 3H), 2.85 (s, 2H), 2.61 (t, *J* = 7.6 Hz, 3H), 1.72 – 1.58 (m, 2H), 1.03 (t, *J* = 7.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.43, 133.74, 131.94, 128.67, 126.99, 126.77, 123.11, 36.64, 25.64, 21.99, 13.90. HRMS (ESI) m/z calcd for C₁₃H₁₇N₃ [M+H]⁺:216.1503.Found: 216.1505.

Liquid; ¹H NMR (500 MHz, DMSO) δ 8.72 (d, J = 4.4 Hz, 1H), 7.94 (t, J = 7.2 Hz, 1H), 7.82 (d, J = 7.7 Hz, 2H), 7.73 (d, J = 7.9 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 - 7.33 (m, 1H), 7.30 (t, J = 7.4 Hz, 1H), 4.63 (s, 2H), 4.00 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 150.21, 149.81, 139.36, 136.69, 133.35, 128.80, 128.37, 127.92, 127.20, 126.82, 121.98, 121.32, 39.32. HRMS (ESI) m/z calcd for C₁₅H₁₄N₄ [M+H]⁺:251.1298. Found: 251.1289.

Light yellow solid; mp 118.7-119.2 °C; ¹H NMR (500 MHz, DMSO) δ 7.82 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.49 (d, J = 7.0 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 3.78 (s, 2H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.73, 132.57, 131.91, 131.83, 129.45, 129.36, 129.23, 128.55, 128.14, 124.49, 120.94, 37.60. HRMS (ESI) m/z calcd for C₁₆H₁₄BrN₃ [M+H]⁺:328.0448. Found: 328.0447.

Light yellow solid; mp 102.8-104.0 °C; ¹H NMR (500 MHz, DMSO) δ 7.91 – 7.86 (m, 2H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.51 – 7.43 (m, 5H), 3.80 (s, 2H), 3.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.72, 132.81, 132.06, 131.89, 129.43, 129.36, 129.25, 128.91, 128.57, 127.84, 124.42, 37.62. HRMS (ESI) m/z calcd for C₁₆H₁₄ClN₃ [M+H]⁺:284.0958. Found: 284.0954.

Liquid; ¹H NMR (500 MHz, DMSO) δ 7.75 (d, J = 8.7 Hz, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.49 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 3.85 (s, 2H), 3.79 (s, 3H), 3.72 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 158.86, 139.81, 131.54, 129.76, 129.33, 129.14, 128.34, 128.02, 126.09, 123.96, 114.20, 55.30, 37.46. HRMS (ESI) m/z calcd for C₁₇H₁₇N₃O [M+H]⁺:280.1455. Found: 280.1448.

Yellow solid; mp 140.1-140.9 °C; ¹H NMR (500 MHz, CDCl3) δ 8.31 – 8.26 (m, 2H), 8.10 – 8.04 (m, 2H), 7.57 (t, J = 7.5 Hz, 2H), 7.50 (t, J = 4.7 Hz, 1H), 7.45 – 7.42 (m, 2H), 3.83 (s, 3H), 3.17 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 146.30, 140.33, 137.52, 132.61, 129.42, 129.37, 128.90, 126.51, 125.55, 124.12, 37.82. HRMS (ESI) m/z calcd for C₁₆H₁₅N₄O₂ [M+H]⁺:295. 1194.Found: 295.1193.

Light yellow solid; mp 168.6-169.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.4 Hz, 1H), 7.26 – 7.16 (m, 4H), 7.05 (d, *J* = 6.6 Hz, 1H), 5.25 (s, 1H), 3.06 (s, 1H), 2.39 (s, 2H). ¹³C NMR (125 MHz, DMSO) δ 140.32, 138.47, 138.21, 134.06, 132.54, 130.11, 129.66, 128.90, 128.87, 127.67, 127.23, 127.03, 126.75, 126.68, 53.26, 21.34. HRMS (ESI) m/z calcd for C₂₃H₂₁N₃ [M+H]⁺:340. 1812.Found: 340.1815.

Orange solid; mp 83.4-85.0 °C; ¹H NMR (500 MHz, DMSO) δ 7.57 – 7.53 (m, 2H), 7.51 – 7.48 (m, 2H), 7.47 – 7.43 (m, 2H), 7.42 (dt, *J* = 3.7, 1.9 Hz, 1H), 7.11 (dd, *J* = 5.1, 3.6 Hz, 1H), 3.86 (s, 2H), 3.70 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 135.72, 135.44, 131.76, 129.34, 129.23, 128.58, 127.58, 123.98, 123.95, 123.21, 37.62. HRMS (ESI) m/z calcd for C₁₄H₁₃N₃ S[M+H]⁺:256.0906.Found: 256.0908.

Light yellow solid; mp 222.6-223.3 °C;¹H NMR (500 MHz, DMSO) δ 12.98 (s, 1H), 8.43 (s, 1H), 7.90 (m, 4H), 7.65 (m, 2H), 7.39 (m, 3H). ¹³C NMR (125 MHz, Acetone) δ 135.62, 131.44, 128.53, 127.69, 127.27, 125.84, 120.29. HRMS (ESI) m/z calcd for C₁₅H₁₁BrN₂O [M+H]⁺: 315.0129.Found: 315.0128.

Light yellow solid; mp 236.2-237.2 °C;¹H NMR (500 MHz, DMSO) δ 12.87 (s, 1H), 8.30 (s, 1H), 7.94 (m, 4H), 7.45 (m, 4H), 7.31 (t, J = 6.7 Hz, 2H). ¹³C NMR (125 MHz, Acetone) δ 135.52, 131.83, 128.40, 127.02, 125.86. HRMS (ESI) m/z calcd for C₁₅H₁₂N₂O [M+H]⁺: 237.1023.Found: 237.1022.

Deep yellow solid; mp 228.0-229.4 °C;¹H NMR (400 MHz, DMSO) δ 12.95 (s, 1H), 8.41 (s, 1H), 7.93 (m, 5H), 7.48 (m, 4H), 7.32 (m, 1H). ¹³C NMR (125 MHz, Acetone) δ 135.59, 132.13, 131.11, 128.52, 128.45, 127.37, 127.24, 125.83. HRMS (ESI) m/z calcd for C₁₅H₁₁ClN₂O [M+H]⁺: 271.0636.Found:

271.0635.

Light yellow solid; mp 240.0-241.0°C;¹H NMR (400 MHz, DMSO) δ 12.80 (s, 1H), 8.23 (s, 1H), 7.89 (m, 4H), 7.43 (m, 2H), 7.33 – 7.21 (m, 3H), 2.33 (s, 3H). HRMS (ESI) m/z calcd for C₁₅H₁₂N₂O [M+H]⁺: 251.1182.Found: 251.1184.

Deep yellow solid; mp 220.6-221.4°C; ¹H NMR (500 MHz, DMSO) δ 12.74 (s, 1H), 8.18 (s, 1H), 7.88 (m, 4H), 7.44 (m, 2H), 7.30 (t, *J* = 7.1 Hz, 1H), 7.03 (m, 2H), 3.80 (s, 3H). ¹³C NMR (125 MHz, Acetone) δ 159.02, 134.88, 128.37, 127.19, 126.92, 125.81, 113.84, 54.67. HRMS (ESI) m/z calcd for C₁₆H₁₄N₂O₂ [M+H]⁺: 267.1134.Found: 267.1135.

Light yellow solid; mp 211.9-212.9°C;¹H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 7.89 (s, 3H), 7.37 (t, *J* = 7.3 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 2.57 – 2.52 (m, 2H), 1.57 (dt, *J* = 15.2, 7.5 Hz, 2H), 1.33 (dd, *J* = 14.6, 7.3 Hz, 2H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, Acetone) δ 135.69, 132.88, 128.18, 126.38, 125.40, 30.96, 23.43, 22.21, 13.24. HRMS (ESI) m/z calcd for C₁₃H₁₆N₂O [M+H]⁺:217.1346.Found: 217.1344.

Brown solid; mp 184.4-185.5 °C; ¹H NMR (500 MHz, DMSO) δ 12.17 (s, 1H), 7.88 (m, 2H), 7.81 (s, 1H), 7.38 (t, *J* = 7.1 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 3.13 - 3.03 (m, 1H), 1.23 (d, *J* = 7.0 Hz, 6H). HRMS (ESI) m/z calcd for C₁₂H₁₄N₂O [M+H]⁺:203.1183.Found: 203.1185.

Black solid; mp 189.7-190.5 °C; ¹H NMR (500 MHz, DMSO) δ 12.93 (s, 1H), 8.38 (s, 1H), 7.92 (m, 2H), 7.73 (m, 1H), 7.45 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 6.77 (d, *J* = 3.1 Hz, 1H), 6.61 (m, 1H). ¹³C NMR (125 MHz, Acetone) δ 141.49, 135.04, 128.42, 127.07, 125.66, 111.19, 105.89. HRMS (ESI) m/z calcd for C₁₃H₁₀N₂O₂ [M+H]⁺:227.0283.Found: 227.0285.

Light yellow solid; mp 230.0-231.2°C;¹H NMR (500 MHz, DMSO) δ 12.96 (s, 1H), 8.42 (s, 1H), 7.94 (m, 4H), 7.39 (m, 5H). ¹³C NMR (125 MHz, Acetone) δ 135.61, 132.13, 128.52, 128.45, 127.37, 127.24, 125.83. HRMS (ESI) m/z calcd for C₁₅H₁₁ClN₂O [M+H]⁺: 271.0635.Found: 271.0633.

Light yellow solid; mp 242.1-242.9°C;¹H NMR (500 MHz, DMSO) δ 12.80 (s, 1H), 8.22 (s, 1H), 8.02 – 7.70 (m, 4H), 7.29 (m, 5H), 2.35 (s, 3H). HRMS (ESI) m/z calcd for C₁₅H₁₂N₂O [M+H]⁺: 251.1183.Found: 251.1184.

Deep yellow solid; mp 208.6-210.4 °C; ¹H NMR (500 MHz, DMSO) δ 12.73 (s, 1H), 8.17 (s, 1H), 7.93 (d, J = 3.4 Hz, 2H), 7.86 (d, J = 6.5 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.3 Hz, 1H), 7.03 (d, J = 8.4 Hz, 2H), 3.80 (s, 1H). ¹³C NMR (125 MHz, Acetone) δ 159.03, 134.79, 128.37, 127.19, 126.93, 125.82, 113.85, 54.67. HRMS (ESI) m/z calcd for C₁₆H₁₄N₂O₂ [M+H]⁺: 267.1136.Found: 267.1133.

Yellow solid; mp >250°C; ¹H NMR (500 MHz, DMSO) δ 13.18 (s, 1H), 8.69 (s, 1H), 8.32 (d, *J* = 8.9 Hz, 2H), 8.24 (d, *J* = 7.8 Hz, 2H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.35 (s, 3H). ¹³C NMR (125 MHz, Acetone) δ 146.35, 137.34, 136.32, 129.28, 126.13, 125.88, 125.57, 123.65, 20.35. HRMS (ESI) m/z calcd for C₁₆H₁₃N₃O₃ [M+H]⁺: 296.1037.Found: 296.1036.

3g

ΗŅ

CH₃

6. X-ray crystallography Data of 4d

Single crystals of compound **3c** were measured on a Rigaku RAXIS-RAPID single-crystal diffractometer. The recrystallization solvent of **4d** was MeOH.

Figure S1 X-ray crystal structure of 4d

Formula moiety	C16 H14 N2 O
Formula sum	C16 H14 N2 O
Formula weight	250.29
Temperature	293 K
Crystal system	monoclinic
Space group	P 21/c
Unit cell dimensions	a=13.1976(17) Å
	b=10.5014(8) Å
	c=9.8453(11) Å
	alpha = 90 deg.
	beta = 108.284(14) deg.
	gamma = 90 deg.
Volume	1295.6(3) Å ³
Z	4
Calculated density	1.283 g/cm^3
Absorption coefficient	0.082 mm^{-1}
F(000)	528.0
Crystal size	0.42 x 0.36 x 0.2 mm
Theta range for data collection	3.2448 to 29.4437
Reflections collected / unique	6148 /2359 [R(int) = 0.0378]
Data / restraints / parameters	2359/0/178
Goodness-of-fit on F2	1.043
Final R indices $[Fo > 4sig(Fo)]$	R1 = 0.0488, WR2 = 0.1109
R indices (all data)	R1 = 0.0769, $wR2 = 0.1267$

Reference:

 (a) Gilchrist, T. L.; Mendonca, R. ARKIVOC. 2000, 769; (b) Liu, L.; Liebeskind, S. J. Am. Chem. Soc. 2008, 130, 6918; (c) Khazaei, M. A. Synthesis 2009, 21, 3672; (d) Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem., 1982, 47, 5088; (e) Chiba, S.; Wang, Y. F.; Lapointe, G.; Narasaka, K. Org. Lett. 2008, 10, 313.