3D porous hybrids of defect-rich MoS₂/graphene nanosheets with excellent electrochemical performance as anode materials for lithium ion batteries

Longsheng Zhang,^a Wei Fan,^a Weng Weei Tjiu,^b and Tianxi Liu*^a

Electronic Supplementary Information

Fig. S1 FESEM image of bulk MoS_2 . The digital image (inset) shows the poor dispersibility of bulk MoS_2 in aqueous solution (3 mg mL⁻¹).

Fig. S2 FESEM images of dr-MoS $_2$ NSs (a) before and (b) after the thermal reduction process.

Fig. S3 TEM images of dr-MoS $_2$ NSs (a) before and (b) after the thermal reduction process.

Fig. S4 (a) TEM and (b) HRTEM images of df-MoS₂ NSs.

Fig. S5 FESEM images, corresponding EDX spectra and EDX mapping images of (a) dr-MoS₂/GNS (2:1), (b) dr-MoS₂/GNS (6:1) and (c) dr-MoS₂/GNS (10:1) hybrids.

Fig. S6 XRD patterns of dr-MoS₂ NSs before and after the thermal reduction process.

Fig. S7 (a) XPS survey spectrum and (b) high resolution C 1s spectrum of GO sheets.

Fig. S8 First three discharge and charge curves of GNS in the voltage range from 0.01

to 3.0 V at a current density of 0.1 A g⁻¹.

Fig. S9 Comparison of the cycling performance of $dr-MoS_2$ NSs, $df-MoS_2$ NSs and bulk MoS_2 at a current density of 0.1 A g⁻¹.

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S6

Fig. S7

Fig. S8

Fig. S9