Electronic Supplementary Information

A triazine-based covalent organic framework-palladium hybrid for one-pot silicon-based cross-coupling of silanes and aryl iodides

Sha Lin,^{*a*} Yuxia Hou,^{*b*} Xiao Deng,^{*a*} Haoliang Wang,^{*a*} Shuzhuang Sun^{*a*} and Xiaomei Zhang*^{*a*}

Figure S1. Thermogravimetric analysis (TGA) data of (A) COF-SDU1 and (B) Pd(II)/COF-SDU1.

Figure S2. ¹³C CP/MAS NMR spectrum of trif.

Figure S3. XPS spectrum of $Pd(OAc)_2$ (bule line) and Pd(II)/COF-SDU1 (pink line).

Figure S4. PXRD patterns of **Pd(II)/COF-SDU1** (a) before reused, (b) after reused first time and (c) three times.

Figure S5. Fourier transforms infrared (FT-IR) spectra of Pd(II)/COF-SDU1 (a) before reused, (b) after reused first time and (c) three times in the region of 500-2000 cm⁻¹ with 2 cm⁻¹ resolution.

R _(4-n) S	iH _n + <i>n</i> ROH	Pd(11)/COF-SE	$\sim R_{(4)}$	_{4-n)} Si(OR) _r 1	$n + n H_2$
Entry	$R_{(4-n)}SiH_n$	ROH	1	$t(h)^a$	Yield $(\%)^{b,c}$
1	PhSiH ₃	H_2O	1 a	2	97.8
2	Me ₂ PhSiH	H_2O	1b	2	97.3
3	Ph_2SiH_2	H_2O	1c	2	97.1
4	PhSiH ₃	CH ₃ OH	1d	3	98.0
5	PhSiH ₃	C ₂ H ₅ OH	1e	3	97.0

Table S1 Catalytic activity test of Pd(II)/COF-SDU1 towards oxidation oforganosilanes to organo(alkoxy)silanes or organosilanols.

^{*a*} Reaction conditions: $R_{(4-n)}SiH_n$ (1 mmol), ROH (5 mmol), Pd(II)/COF-SDU1 (20 mg, 8.5 \square 10⁻³ mmol of Pd) and THF (2 mL), room temperature. ^{*b*} Isolated yield. ^{*c*} The values are the average of two independent experiments.

Table S2 Catalytic activity test of Pd(II)/COF-SDU1 towards silicon-based cross-coupling reaction of the organo(alkoxy)silanes or organosilanols with aryl iodides.

\bigtriangledown	R ² Si-R ¹ + R ³		Pd(11)/C	COF-SDU1	
Entry	R^1	\mathbf{R}^2	R^3	t (h) ^{<i>a</i>}	Yield $(\%)^{b,c}$
1	OCH ₃	OCH ₃	OCH ₃	7	97.8
2	OCH ₃	CH ₃	CH ₃	18	58.1
3	OH	CH ₃	CH ₃	18	66.5

^{*a*} Reaction conditions: organo(alkoxy)silanes or organosilanols (1 mmol), aryl halides (1.1 mmol), **Pd(II)/COF-SDU1** (20 mg, $8.5 \,\text{Pm}\,10^{-3}$ mmol of Pd), TBAF (3 mmol) and THF (2 mL), 80 °C. ^{*b*} Isolated yield. ^{*c*} The values are the average of two independent experiments.

NMR signals:¹⁻⁶

Phenylsilanetriol (1a): ¹H NMR (300 MHz, CDCl₃): δ=7.74-7.55 (m, 2H), 7.42-7.24 (m, 3H).

Dimethylphenylsilanol (1b): ¹H NMR (300 MHz, CDCl₃): δ=7.64-7.60 (m, 2H), 7.46-7.37 (m, 3H), 3.15 (bs, 1H), 0.41 (s, 6H).

Diphenylsilanediol (1c): ¹H NMR (300 MHz, CDCl₃): δ=7.73-7.70 (m, 4H), 7.49-7.33 (m, 6H), 2.17 (bs, 2H).

Phenyltrimethoxylsilane (1d): ¹H NMR (400 MHz, CDCl₃): δ=7.71-7.69 (m, 2H), 7.46-7.40 (m, 3H), 3.65 (s, 9H).

Phenyltriethoxylsilane (1e): ¹H NMR (400 MHz, CDCl₃): δ=7.70-7.66 (m, 2H),

7.40-7.30 (m, 3H), 3.90-3.83 (q, *J* = 6.9 Hz, 6H), 1.25-1.20 (t, *J* = 7.2 Hz, 9H).

4-methyl-bipheny (2a): ¹H NMR (300 MHz, CDCl₃): δ =7.53-7.49 (m, 2H), 7.44-7.41 (m, 2H), 7.40-7.32 (m, 2H), 7.28-7.22 (m, 1H), 7.19-7.15 (m, 2H), 2.33-2.32 (d, *J* = 3.0 Hz, 3H). *R*_f = 0.5 (100% petroleum ether).

2-methyl-bipheny (2b): ¹H NMR (300 MHz, CDCl₃): δ =7.37-7.32 (m, 2H), 7.29-7.24 m, 3H), 7.21-7.16 (m, 4H), 2.20 (s, 3H). $R_{\rm f} = 0.5$ (100% petroleum ether).

4-methoxy-biphenyl (2c): ¹H NMR (300 MHz, CDCl₃): δ=7.57-7.51 (m, 4H),

7.44-7.39 (m, 2H), 7.33-7.28 (m, 1H), 7.01-6.56 (m, 2H), 3.86 (s, 3H). $R_{\rm f} = 0.5$ (100% petroleum ether).

4-fluoro-bipheny (2d): ¹H NMR (300 MHz, CDCl₃): δ =7.51-7.41 (m, 4H), 7.40-7.25 (m, 3H), 7.09-7.02 (m, 2H). $R_{\rm f}$ = 0.5 (100% petroleum ether).

4-hydroxy-bipheny (2e): ¹H NMR (300 MHz, CDCl₃): δ=7.57-7.53 (m, 2H),

7.51-7.47 (m, 2H), 7.45-7.39 (m, 2H), 7.34-7.28 (m, 1H), 6.94-6.89 (m, 2H). $R_{\rm f} = 0.5$ (petroleum ether/*n*-hexane 1:1).

4-nitro-biphenyl (2f): ¹H NMR (300 MHz, CDCl₃): δ =8.33-8.28 (m, 2H), 7.77-7.72 (m, 2H), 7.65-7.61 (m, 2H), 7.53-7.42 (m, 3H). $R_{\rm f}$ = 0.5 (petroleum ether/ethyl acetate 1:1).

References:

1. J. John, E. Gravel, A. Hagége, H. Li, T. Gacoin, and E. Doris, *Angew. Chem. Int. Ed.* 2011, **50**, 7533-7536.

2. M. Shibata, R.Horie and W. Yoneta, Polymer, 2010, 51, 5764-5770.

3. A. S. Manoso, C. Ahn, A. Soheili, C. J. Handy, R. Correia, W. M. Seganish, and P. DeShong, *J. Org. Chem.*, 2004, **69**, 8305-8314.

4. L. Bai and J. Wang, Adv. Synth. Catal. 2008, 350, 315-320.

5. D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. G. Fortanet, T. Kinzel and S. L. Buchwald, Science, 2009, **325**, 1661-1664.

6. P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen and Y.Gao, *Org. Lett.*, 2005, 7, 2085-2088.