Electronic Supplementary Information

High Affinity Host-Guest Complex of Cucurbit[7]uril with a Bis(thiazolium) Salt

Shengke Li,^{*a*} Xiaoqing Miao,^{*a*} Ian W. Wyman,^{*b*} Ye Li,^{*a*} Ying Zheng,^{*a*} Yitao Wang,^{*a*} Donal H. Macartney^{*b*,*} and Ruibing Wang^{*a*,*}

^{*a*} State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China

^b Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada.

* Correspondence should be addressed to: donal@chem.queensu.ca (D. H. Macartney) or rwang@umac.mo (R. Wang)

Contents	Page
Figure S1. ¹ H NMR spectrum (400 MHz, D ₂ O) of [BTX]Br ₂	S 2
Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum (100 MHz, D ₂ O) of [BTX]Br ₂	S 3
Figure S3. HSQC NMR spectrum of [BTX]Br ₂	S 4
Figure S4. HPLC chromatogram of [BTX]Br ₂	S 5
Figure S5. NOESY spectrum of BTX^{2+} -CB[7] complex	S 6
Figure S6. DOSY spectrum of BTX ²⁺ -CB[7] complex	S 7
Calculation of Host-Guest Binding Constant by Competitive ¹ H NMR	
spectroscopy	S 8
Figure S7. ¹ H NMR spectrum for competitive NMR binding constant calculation.	S 9
Figure S8. Kinetic plot for the C(2)-H/D exchange reaction of BTX^{2+} as a function	
of pD at 298K	S10
Figure S9. Kinetic plot for the C(2)-H/D exchange reaction of $\{BTX \cdot CB[7]\}^{2+}$ as a	
function of pD at 298K	S10
Figure S10. UV-Visible spectra of continuous titration of BTX ²⁺ -CB[7]	S11
Figure S11 . Energy-minimized structure of BTX ²⁺	S12
Table S1. Atomic coordinates for BTX^{2+} from energy-minimization calculations	S12
Figure S12. Energy minimized structure for $\{BTX \cdot CB[7]\}^{2+}$ with atom labeled with	
center numbers	S13
Table S2. Atomic coordinates for $\{BTX \cdot CB[7]\}^{2+}$ from energy-minimization	
calculations	S13
Full citation for Gaussian method reference	S17

Figure S1. ¹H NMR spectrum of $[BTX]Br_2$ in D_2O (400 MHz). Note: the H2 proton (9.91 ppm) has exchanged with deuterium from D_2O .

Figure S2. ¹³C NMR spectrum of [BTX]Br₂ in D₂O (100 MHz). Note: the C1 and C4 carbons on the *p*-xylyl ring are not observed.

Figure S3. HSQC spectrum of $[BTX]Br_2$ in D_2O . Note: there is no coupling between the C2 carbon and H2 proton resonances as the proton has been exchanged with deuterium from the D_2O .

操作者 : 系统 仪器 : 1260LC 位置:样品瓶 73 进样日期 : 2015/5/26 9:30:41 定件量 : 1.000 µ1 采集方法 : C:\CHEM32\1\METHODS\LC.M 最后修改 : 2015/5/26 9:36:48 : 系统 DADI A, Sig=250.4 Ref=off (LLPUL-8.D) mAU 175 150 125 100 75 100 0 0 0 0 0 0 0 0 0 0 0 0				
仪器 : 1260LC 位置:样品瓶 73 进样日期 : 2015/5/26 9:30:41 建样量 : 1.000 μ1 采集方法 : C:\CHEM32\1\METHODS\LC.M 最后修改 : 2015/5/26 9:30:48 : 系统 DADI A, Sig=250.4 ReFoff (LLPLL8D) mAU 175 150 125 100 75 50 0 0 0 0 0 0 0 0 0 0 0 0 0	操作者	: 系统		
進祥日期 : 2015/5/26 9:30:41 进祥量: 1.000 μ1 采集方法 : C:\CHEM32\1\METHODS\LC.M 最后修改 : 2015/5/26 9:29:47 : 系统 分析方法 : C:\CHEM32\1\METHODS\LC-1.M 最后修改 : 2015/5/26 9:36:48 : 系统 DADIA, Sig=250,4 Ref-off (LLPLI-8.D) mAU 175 160 25 0 0 0 0 0 0 0 0 0 0 0 0 0	仪器	: 1260LC	位置: 样品瓶 73	
进样量: 1.000 μ1 最后修改 : 2015/5/26 9:29:47 : 系统 分析方法 : C:\CHEM32\1\METHODS\LC-1.M 最后修改 : 2015/5/26 9:36:48 : 系统 DAD1 A, Sig=250,4 Ref-off (LLPUI-8.D) mAU 175- 150 25 0 0 0 0 0 0 0 0 0 0 0 0 0	进样日期	: 2015/5/26 9:30:41		
采集方法 : C:\CHEM32\1\METHODS\LC.M 最后修改 : 2015/5/26 9:39:47 : 系统 分析方法 : C:\CHEM32\1\METHODS\LC-1.M 最后修改 : 2015/5/26 9:36:48 : 系统 DAD1 A, Sig=250,4 Ref=off (LLPLI-8.D) mAU 175 150 125 100 75 50 25 0 0 0 0 0 0 5 0 15 0 0 0 0 5 0 15 0 0 0 0			进样量 : 1.000 µl	
最后修改 : 2015/5/26 9:29:47 : 系统 分析方法 : C:\CHEM32\1\METHODS\LC-1.M 最后修改 : 2015/5/26 9:36:48 : 系统 DADI A, Sig=250,4 Ref=off (LLPLI-8.D) mAU 175 150 125 100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0	采集方法	: C:\CHEM32\1\METHODS\LC.M		
分析方法 : C:\CHEM32\1\METHODS\LC-1.M 最后修改 : 2015/5/26 9:36:48 : 系统 DADI A, Sig=250,4 Ref=off (LLPUI-8.D) mAU 175- 150- 125- 50- 25- 0	最后修改	: 2015/5/26 9:29:47 : 系统		
最后修改 : 2015/5/26 9:36:48 : 系统 DADI A, Sig=250,4 Ref=off (LLPUI-8.D)	分析方法	: C:\CHEM32\1\METHODS\LC-1.M		
DADI A, Sig=250,4 Ref=off (LLP/LI-8.D) mAU 175- 150- 125- 100- 75- 50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0	最后修改	: 2015/5/26 9:36:48 : 系统		
mAU 175 150 125 100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0	DAD1 /	A, Sig=250,4 Ref=off (LLP\LI-8.D)		
175 150 125 100 75 50 25 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 3 min	mAU			
175 150 125 100 75 50 25 0 0 0 0 0 1 15 2 25 0 0 0 0 0 0 0 0 0 0				
	175 -			
			٨	
125 100 75 50 25 0 0 0 1 15 2 2 25 3 min	150 -			
125 100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0	-			
125 100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0	-			
	125 -			
100 75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0				
	100 -			
75 50 25 0 0 0 0 0 0 0 0 0 0 0 0 0	-			
13 50 25 0 0 0 0 0 0 0 1 15 2 2 25 3 min 25 3 25 3 15 2 25 3 25 3 15 3 15 2 25 3 3 15 15 2 25 3 3 15	75			
50 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15			
50- 25- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	-			
	50 -			
	-			
	25 -			
			S.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-			<u> </u>
	 ,	05 1		min

Figure S4. HPLC chromatogram of [BTX]Br₂. Stationary phase: C18; Mobile phase: MeOH:H₂O = 10: 90 (1.0g TTAB (Tetradecyltrimethylammonium bromide) and 2 mL glacial acetic acid was added into 500ml H₂O). Temperature: 35 °C; Flow rate: 1 mL/min; Detection wave length: 250 nm. The PDA integration shows of a purity higher than 98% (consistent with ¹H and ¹³C NMR spectra).

Figure S5. NOESY spectrum of BTX^{2+} -CB[7] complex showing no correlation between the host and guest protons due to the protons of the host CB[7] pointing "externally". This data supports the formation of inclusion complex (instead of "exclusion").

Figure S6. DOSY spectrum of BTX^{2+} -CB[7] complex showing identical diffusion coefficients for both the host and the guest protons attests the strong supramolecular complexation.

Calculation of Host-Guest Binding Constant by Competitive ¹**H NMR spectroscopy** (see Figure S4 below)

 $[TMAF]_{total} = 1.82 \text{ mM}$ (total integration of the free and bound trimethyl group protons is 9)

 $[TMAF]_{bound} = 1.82 \times 5.22/11 = 0.86 \text{ mM};$

 $[TMAF]_{free} = 1.82-0.86 = 0.96 mM;$

 $[BTX^{2+}]_{bound} = 1.82 \times 3.70/4 = 1.68 \text{ mM}$ (Integration for bound-guest 4 aromatic proton is about 3.70);

 $[BTX^{2+}]_{free} = 1.82 \times 81.93/4 = 37.28 \text{ mM}$ (Integration for free-guest 4 aromatic proton is 81.93);

Therefore, $[CB[7]-BTX^{2+}]_{complex} = [BTX^{2+}]_{bound} = 1.68 \text{ mM};$

 $[CB[7]-TMAF]_{complex} = [TMAF]_{bound} = 0.86 mM;$

As $K_{CB[7]-BTX}/K_{CB[7]-TMAF} = [CB[7]-BTX^{2+}]_{complex} \times [TMAF]_{free}/([CB[7]-TMAF]_{complex} \times [BTX^{2+}]_{free}) = 1.68 \times 0.96/(0.86 \times 37.28) = 0.05$ and $K_{CB[7]-TMAF} = (3.31 \pm 0.62) \times 10^{11} \text{ M}^{-1}$; Therefore, $K_{CB[7]-BTX} = (1.66 \pm 0.31) \times 10^{10} \text{ M}^{-1}$.

Figure S7. ¹H NMR spectrum for competitive NMR binding constant calculation.

Figure S8. Kinetic plot for the C(2)-H/D exchange reaction of BTX²⁺ as a function of pD at 298K: pD = 4.26 (\bullet), 4.54 (\blacksquare), 4.81 (\blacktriangle), and 3.96 (∇).

Figure S9. Kinetic plot for the C(2)-H/D exchange reaction of $\{BTX \cdot CB[7]\}^{2+}$ as a function of pD at 298K: pD = 4.31 (•), 4.45 (•), 4.71(•), and 5.06(•).

Figure S10. UV-visible spectra of continuous titration of BTX^{2+} -[CB[7]] ⁺(with [CB[7]] + [BTX^{2+}] fixed at a constant concentration of 0.10 mM, and the ratio of [CB[7]]/[CB[7]+BTX^{2+}]) varies from 0, 0.1, 0.2 ... 1.0 from top to the bottom)

Energy-minimization calculations

Figure S11. Energy-minimized structure of BTX^{2+}

Table S1.	Atomic coordinat	es for BTX ²⁺ (total energy =	-5599.6459 au)
-----------	------------------	----------------------------	----------------	----------------

Standard orientation:

Center	Atomic	Coordinates (Angstroms)
Number	Туре	X Y Z
1	с С	-1.390724 -1.462665 0.076006
2	С	-0.690026 -1.037504 -1.050962
3	С	0.689916 -1.037515 -1.051045
4	С	1.390744 -1.462693 0.075836
5	С	0.695881 -1.853832 1.205562
6	С	-0.695732 -1.853807 1.205651
7	С	2.899275 -1.617101 0.021887
8	Ν	3.621739 -0.292442 -0.069611
9	С	-2.899265 -1.617078 0.022242
10	Ν	-3.621740 -0.292446 -0.069453
11	С	3.252826 0.797648 0.559557
12	S	4.314832 2.077734 0.335689
13	С	5.316705 1.096009 -0.661877
14	С	4.816337 -0.140847 -0.781177
15	С	-4.816350 -0.140977 -0.781030
16	С	-5.316729 1.095891 -0.661923
17	S	-4.314843 2.077796 0.335456
18	С	-3.252832 0.797751 0.559533
19	Н	-6.211281 1.469406 -1.104460
20	Н	6.211247 1.469603 -1.104367
21	Н	-2.366439 0.844566 1.149327
22	Н	-5.217149 -0.962832 -1.326359
23	Н	5.217137 -0.962604 -1.326652
24	Н	2.366438 0.844358 1.149365
25	Н	3.191387 -2.174715 -0.852302
26	Н	3.275631 -2.118517 0.898462
27	Н	1.217848 -2.197240 2.074844

28	Н	1.216230	-0.747796	-1.937286
29	Н	-3.275528	-2.118320	0.898957
30	Н	-3.191459	-2.174873	-0.851804
31	Н	-1.217600	-2.197195	2.075000
32	Н	-1.216441	-0.747780	-1.937141

Figure S12. Energy minimized structure for {BTX•CB[7]} with atom labeled with center numbers (see table below)

Table S2. Atomic coordinates for {BTX•CB[7]} from energy-minimization calculations (total energy = -5599.6459 au)

Standard orientation:						
Center	Atomic	Coord	Coordinates (Angstroms)			
Number	Туре	Х	Y	Z		
1	с С	-2.847019	5.017749	-0.051681		
2	С	-1.393959	5.639074	-0.068118		
3	Ν	-0.842138	5.110387	-1.296194		
4	С	-1.737791	4.361467	-2.020043		
5	Ν	-2.920025	4.328297	-1.317764		
6	Ν	-2.810989	4.170806	1.123996		
7	С	-1.617107	4.229633	1.797118		
8	Ν	-0.813823	5.130024	1.154413		
9	0	-1.546326	3.892077	-3.121626		
10	0	-1.354570	3.642848	2.832195		
11	С	2.246995	5.444755	-0.061880		
12	С	3.626126	4.669420	-0.044977		

13	Ν	3,543843	3.853853	-1.235783
14	C	2.343508	3.964903	-1.887892
15	N	1 610638	4 938814	-1 258272
16	N	1 638967	5 0200014	1 1700/1
17	N C	2 207512	J.029992 A 112100	1 976060
10		2.30/312	4.112100	1.0/0000
18	N	3.5/16/8	3.944880	1.2054/3
19	0	2.022325	3.372830	-2.899826
20	0	2.083431	3.610639	2.938970
21	C	0.428004	5.509506	-1.873288
22	С	0.431361	5.590979	1.742951
23	С	5.786173	1.760469	0.036181
24	С	6.105607	0.209404	0.079865
25	Ν	5.498012	-0.275622	-1.139939
26	С	4.818558	0.696433	-1.828423
27	Ν	5.025176	1.889835	-1.188417
28	N	5.039005	1.966069	1.256068
29	C	4 800504	0 805283	1 950245
30	N	5 457362	-0 213074	1 300526
31	0	4 207505	0.540520	-2 867295
22	0	4.207303	0.340320	-2.007295
32	0	4.103100	0.706096	2.909343
33		5.083988	-3.324515	0.130142
34	C	3.9/8543	-4.4619/6	0.130533
35	N	3.327409	-4.269605	-1.146079
36	C	3.796233	-3.181580	-1.837364
37	N	4.829756	-2.637398	-1.119646
38	Ν	4.771348	-2.573328	1.323440
39	С	3.649169	-3.026663	1.971162
40	С	0.470636	0.409885	1.644572
41	С	-0.487600	0.733637	0.696908
42	С	-0.306131	0.385391	-0.636005
43	С	0.847331	-0.275314	-1.037366
44	С	1.782150	-0.631558	-0.075493
45	С	1,592020	-0.303000	1.253837
46	C	1.185882	-0.613193	-2.488138
47	C	0 424785	0 949772	3 057399
18) N	0.125509	-0 176313	-3 /31985
19	N	-0 745279	0.164205	3 873928
50	C C	-0 757853	-1 002237	-3 9//102
50 51	0	1 052270	-1.002237	-3.944102
JT CO	0	-1.033279	-0.225504	-4.942724
52		-1.077824	1.284/83	-4.665538
53	C	-0.035903	1.153606	-3.83/083
54	C	-1.321742	1.309618	4.824522
55	C	-2.236660	0.676555	5.564669
56	0	-2.442303	-0.945087	5.037440
57	С	-1.250956	-0.745588	3.871033
58	H	-2.818449	1.094452	6.351344
59	Н	-1.449015	2.201713	-5.052263
60	Н	-0.924028	-1.540888	3.236587
61	Н	-1.026193	2.329652	4.846101
62	Н	0.628189	1.907942	-3.478672
63	Н	-0.767847	-2.044412	-3.712021
64	Н	1.309020	-1.672869	-2.625118
65	Н	2.103101	-0.126104	-2,777519
66	Н	2.676925	-1.142172	-0.360062
67	н	-1 048167	0 661073	-1 355059
68	н	1 348000 1 348000	2 020524	3 050559
69	н	1 201525	2.020J24 0 675510	3 522701
09	11	T.JCTJJJ	0.0/0010	5.500/04

70 71	H H	2.314356 -1.364268	-0.576809 1.269122	$1.990010 \\ 0.996132$
72	Ν	3.185773	-4.128920	1.295578
73	0	3.400669	-2.807825	-2.922145
74	0	3.188481	-2.574028	2.997419
75	С	5.673226	-1.603643	-1.694374
76	С	5.593202	-1.525315	1.904202
77	С	4.660427	3.139628	-1.824781
78	С	4.692848	3.255939	1.819777
79	С	0.617547	-5.768262	0.004260
80	С	-0.957537	-5.736425	-0.089773
81	N	-1.184775	-4.991320	-1.312392
82	С	-0.024714	-4.571583	-1.911359
83	N	1.023098	-5.128428	-1.226385
84	Ν	0.880137	-4.999292	1.202488
85	С	-0.260549	-4.509450	1.791793
86	Ν	-1.333141	-5.041779	1.114900
87	0	0.053721	-3.887529	-2.917444
88	0	-0.320155	-3.804632	2.778853
89	C	-4.204423	-4.067507	-0.244055
90	C	-5.128136	-2.782178	-0.261027
91	N	-4.671904	-2.073172	-1.439319
92	C	-3.641624	-2.708955	-2.082409
93	N	-3.375033	-3.874364	-1.412834
94	N	-3.528609	-3.953829	1.027513
95	С	-3.862309	-2.822868	1.721086
96	N	-4.822152	-2.156369	1.005831
97	0	-3.110319	-2.354313	-3.11/333
98	0	-3.441393	-2.518/14	2.819338
100		-2.473558	-4.866066	-1.966/26
101	C	-2.081553	-4.963669	1.031331
101	C	2.372300	-3.16/40/	-1.701312
102	C	-5 542266	-4.900330 -1.025026	1.00/411
107	C	-5.351383	-1.033620	-2 03/30/
105	C	-3 976992	3 550910	1 722681
106	C	-4 132007	3 784067	-1 901691
107	C	-5 285249	2 329926	-0 120264
108	Č	-5 742802	0 816605	-0 190870
109	Ŭ N	-5 107256	0 353230	-1 407992
110	N	-4.577861	2.510573	-1.365037
111	N	-4.460812	2.350407	1.070278
112	С	-4.393256	1.134725	1.706061
113	Ν	-5.212539	0.265127	1.033019
114	С	-4.432261	1.346550	-2.077406
115	0	-3.778745	0.900716	2.725468
116	0	-3.876604	1.234127	-3.149101
117	Н	-3.633113	5.752072	0.032182
118	Н	-1.381510	6.717765	-0.073344
119	Н	2.348070	6.517743	-0.105018
120	Н	4.490295	5.314028	-0.079620
121	Н	0.508668	6.587595	-1.826848
122	Н	0.412760	5.182392	-2.899143
123	Н	0.412792	5.306317	2.781010
124	Н	0.469918	6.667642	1.650533
125	Н	6.664698	2.385829	0.011058
126	Н	7.159408	-0.018738	0.101444

127 128	H H	6.094159 4.382458	-3.700775 -5.459156	0.163119 0.210454
129	Н	6.708141	-1.893290	-1.575857
130	Н	5.416795	-1.544169	-2.738904
131	Н	5.285878	-1.426143	2.931801
132	Н	6.629334	-1.828862	1.846935
133	Н	4.378483	2.899362	-2.836156
134	Н	5.522583	3.793382	-1.820089
135	Н	4.421005	3.081475	2.847397
136	Н	5.560950	3.899241	1.764251
137	Н	1.034640	-6.759823	0.079298
138	Н	-1.417849	-6.710140	-0.139417
139	Н	-4.748494	-4.996496	-0.309619
140	Н	-6.181109	-3.004106	-0.334484
141	Н	-2.964117	-5.829610	-1.936200
142	H	-2.286076	-4.581549	-2.987592
143	Н	-2.609268	-4.715488	2.676473
144	Н	-3.150524	-5.930009	1.508203
145	Н	2.738577	-6.180839	-1.670664
146	H	2.310333	-4.884105	-2.798467
147	Н	1.978975	-4.573264	2.873730
148	Н	2.536019	-5.980151	1.951086
149	H	-5.298855	-1.014119	2.623914
150	H	-6.603472	-1.201063	1.442565
151	Н	-5.001172	-0.853992	-3.049480
152	H	-6.415486	-1.129527	-2.021550
153	H	-3.699553	3.270095	2.724485
154	H	-4.779248	4.277496	1.745369
155	H	-3.927690	3.626037	-2.946940
156	Н	-4.928866	4.504662	-1.779357
157	Н	-6.102607	3.028698	-0.035122
158	Н	-6.812350	0.686056	-0.240007

Reference

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Revision C.02, Gaussian*, Pittsburgh, PA 2004.