SUPPORTING INFORMATION

For

Novel hybrid epoxy silicone materials as efficient anticorrosive coatings for mild steel

Rami Suleiman^{a,*}, Hatim Dafalla^b, Bassam El Ali^c

 ^a Center of Research Excellence in Corrosion (CoRE-C), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia, E-mail: <u>ramismob@kfupm.edu.sa</u>
^b Center for Engineering Research, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
^c Chemistry Department, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

ContentsPa	ıge #
S1. Chemical structure of all chemicals involved in the synthesis of the hybrid coatin	gs2
S2. FTIR spectra of the precursors and the prepared hybrid coatings	4
S3. ¹ H-NMR and ¹³ C-NMR spectra of the precursors and the prepared hybrid coating	;s9
S4. EDS analysis on a single-point on the hybrid coatings	20
S5. Loading force against penetration depth for the prepared hybrid coatings	22

S1. Chemical structure of all chemicals involved in the synthesis of the hybrid coatings

S2. FTIR spectra of the precursors and the prepared hybrid coatings

APT-PDMS

S3. ¹H-NMR and ¹³C-NMR spectra of the precursors and the prepared hybrid coatings

TEOS

MTMS

DER736

PPM

APT-PDMS

APM-DMS

GPTMS

S4. EDS analysis on a single-point on the hybrid coatings

C1

50µm

50µm

50µm

C4

S4. Loading force against penetration depth for the prepared hybrid coatings

62.5	т	т	т	т	Т	Т	т	т	Т	٦
56.2	+	+	+	+	+	+	+	+	+	-
50.0	+	+	+	+	+	+	+ /	+	+	4
43.7	+	+	+	+	+	+	4	f-	+	-
37.5	+	+	+	+	+	+	+	/+	+	4
31.2	+	+	+	+	+	+	+	+	+	4
25.0	+	+	+	+	*	+	+ /	+	+	Н
18.7	+	+	+	+/	+	+	+	+	+	4
12.5	+	+	+	+	+	+	+	+	+	4
6.2	+	+	+	+	+	*	+	÷	+	4
0.0 mN 0.0 nm Indentation	500.0	1000.0	1500.0	2000.0	2500.0	3000.0	3500.0	4000.0	4500.0	5000.0

