Supporting Information for

Quinoline benzimidazole-conjugate for the highly selective detection of Zn(II) by dual colorimetric and fluorescent turn-on responses

K. Velmurugan^a, A. Raman ^{b,c}, Derin Don^a, Lijun Tang^{d,*}, S. Easwaramoorthi ^{b,c,*}and R. Nandhakumar^{a,*}

1. ¹H spectrum of **QBC** -----S2 2. ¹³C-NMR spectrum of **QBC** -----S3 3. Mass Spectrum (LC-MS) of **QBC** -----S3 4. Absorption spectrum of **QBC** -----S4 5. Geometry of the **QBC** optimized using Gaussian 03 at B3LYP /6-31G level of theory-----S4 6. Highest occupied molecular orbital (top) and Lowest Unoccupied Molecular Orbital (bottom) of QBC calculated using Gaussian 03 software at B3LYP /6-31G level of theory-----S5 7. Geometry of the QBC+Zn²⁺ optimized using Gaussian 03 at B3LYP /GenECP level of theory-----S5 8. Highest Occupied Molecular Orbital (top) Lowest Unoccupied Molecular Orbital (bottom) of QBC+Zn²⁺ calculated using Gaussian 03 at B3LYP /GenECP level of theory-----S6 9. Changes of absorption intensity of **QBC** (4 x 10⁻⁶ M) solution (CH₃CN- H₂O, 1:1 v/v, HEPES = 50 mM, pH=7.0) upon addition of different amount of Zn^{2+} (0-90 equiv.).--------S6 10. Changes of fluorescence intensity of **QBC** (4 x 10⁻⁶ M) solution (CH₃CN-H₂O, 1:1 v/v, HEPES = 50 mM, pH=7.0) upon addition of different amount of Zn^{2+} (0-95 equiv. excited at 380 nm) emission = 425 nm-----S7

11. 2D-NMR (¹ H- ¹ H COSY) spectrum of QBC	S7
12. 2D-NMR (¹ H- ¹ H COSY) spectrum of QBC and QBC +Zn ²⁺	S8
13. 1 H-NMR Spectrum of (a) QBC (b) QBC +Zn ²⁺ (c) Titration spectrum of QBC with	th
different equ. of Zn ²⁺	S8
14. TD spectra of QBC by Gaussian 03 at B3LYP /6-31G level of theory	S 9
15. TD spectra of QBC –Zn ²⁺ by Gaussian 03 at B3LYP /6-31G	
level of theory	S 9
16. ¹ H NMR spectra of QBC by Gaussian 03 at SCF /6-31G level of theory	S10
17. 1 H NMR spectra of QBC +Zn $^{2+}$ by Gaussian 03 at SCF /6-31G level of theory	S11
18. The effect of pH QBC and QBC +Zn ²⁺	S12
19. The effective time response of QBC and QBC +Zn ²⁺	S12
20. Experimental Section	·S13

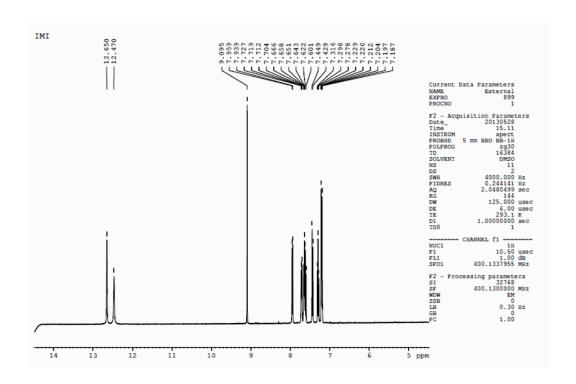


Fig. S1. ¹H-NMR Spectrum of QBC

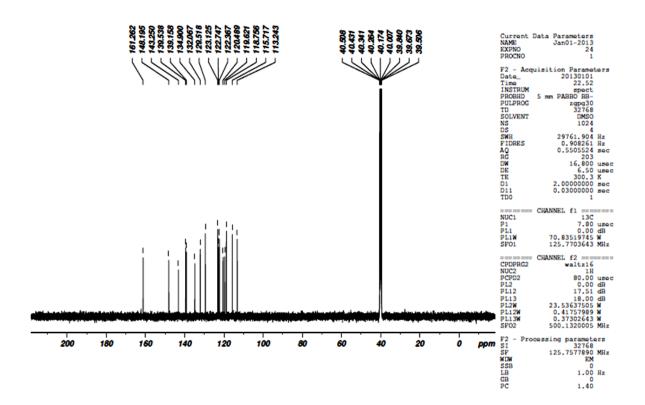


Fig. S2. ¹³C-NMR Spectrum of QBC

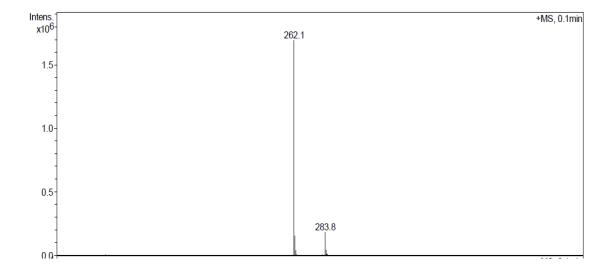
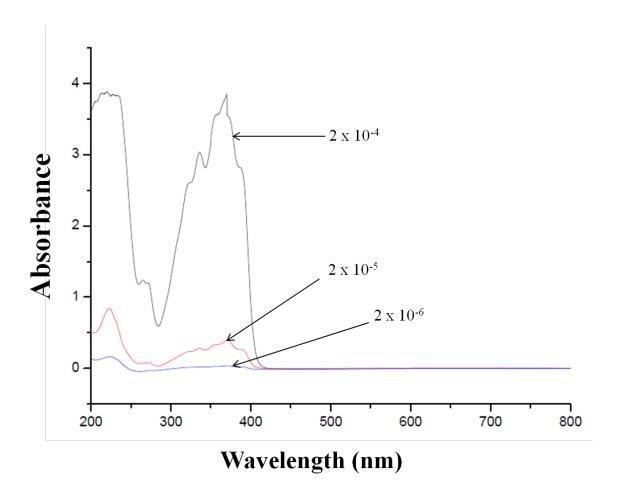
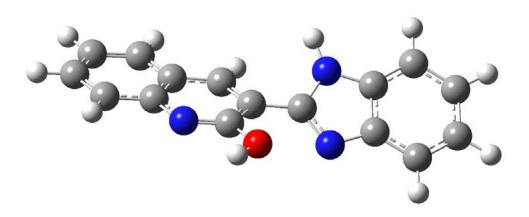
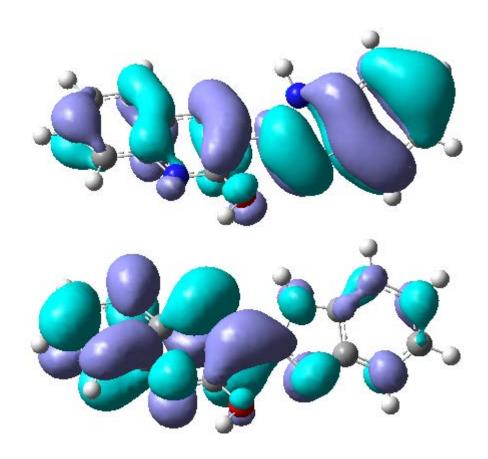
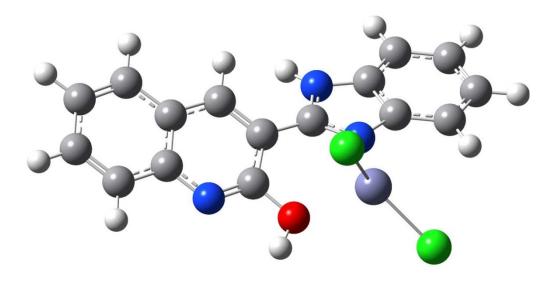
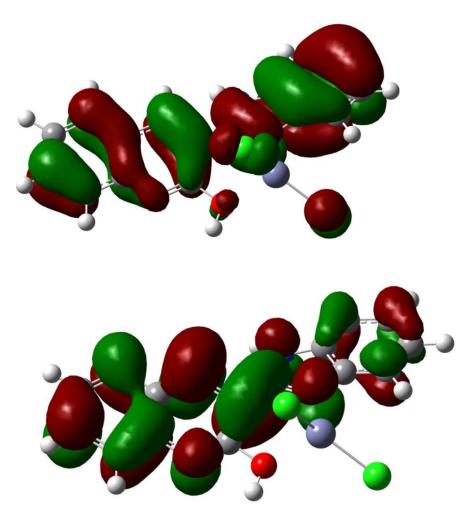
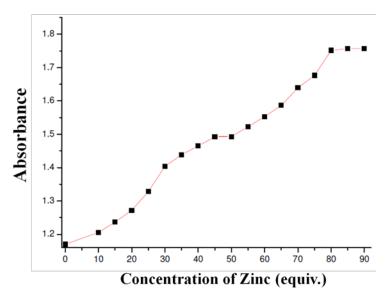


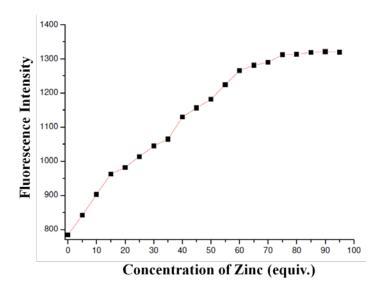
Fig. S3. LC- Mass spectrum of QBC


Fig. S4. Absorption spectrum of QBC in CH₃CN:H₂O (1:1 v/v) solution


Fig. S5. Geometry of the \mathbf{QBC} optimized using Gaussian 03 at B3LYP /6-31G level of theory


Fig. S6. Highest occupied molecular orbital (top) and Lowest Unoccupied Molecular Orbital (bottom) of **QBC** calculated using Gaussian 03 software at B3LYP /6-31G level of theory


 $\textbf{Fig. S7.} \ \ Geometry \ of the \ \textbf{QBC} + Zn^{2+} \ optimized \ using \ Gaussian \ 03 \ at \ B3LYP \ / GenECP \ level \ of theory$

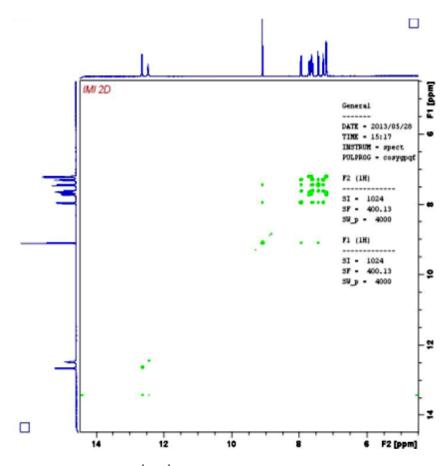

Fig. S8. Highest Occupied Molecular Orbital (top) Lowest Unoccupied Molecular Orbital (bottom) of **QBC**+Zn²⁺ calculated using Gaussian 03 at B3LYP/GenECP level of theory.

Fig. S9. Changes of absorption intensity of **QBC** (4 x 10^{-6} M) solution (CH₃CN-H₂O, 1:1 v/v, HEPES = 50 mM, pH=7.0) upon addition of different amount of Zn²⁺ (0-90 equiv.).

Fig. S10. Changes of fluorescence intensity of **QBC** (4 x 10^{-6} M) solution (CH₃CN-H₂O, 1:1 v/v, HEPES = 50 mM, pH=7.0) upon addition of different amount of Zn²⁺ (0-95 equiv. excited at 380 nm) emission = 425 nm.

Fig. S11. 2D (¹H–¹H COSY) NMR Spectrum of **QBC**

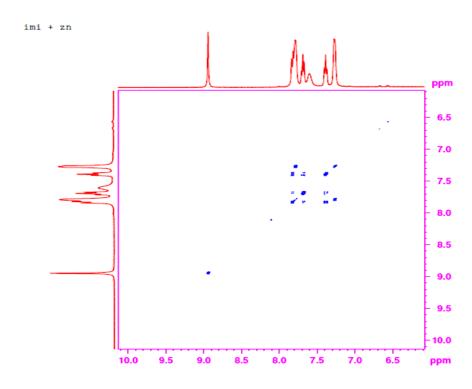


Fig. S12. 2D (¹H-¹H COSY) NMR Spectrum of **QBC**+Zn²⁺

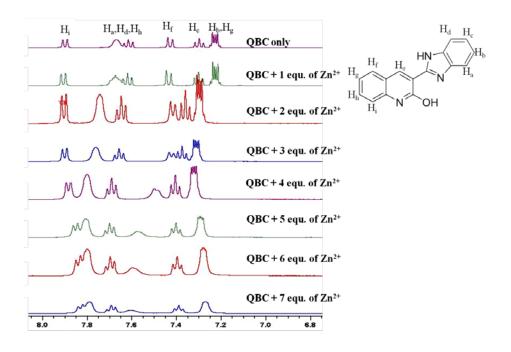


Fig. S13. Partial ¹H-NMR titration spectrum of **QBC** with different equ. of Zn²⁺

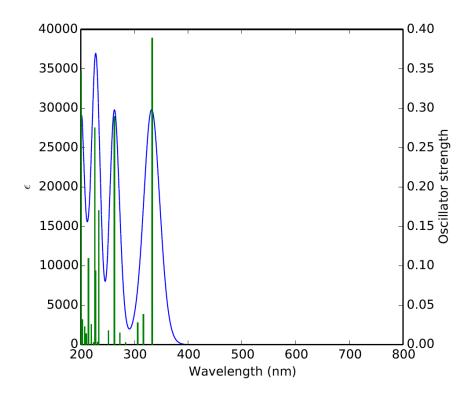


Fig. S14. TD spectra of QBC by Gaussian 03 at B3LYP /6-31G level of theory

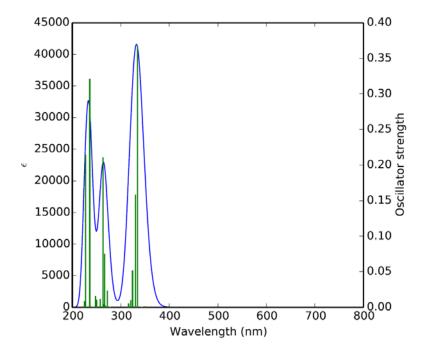
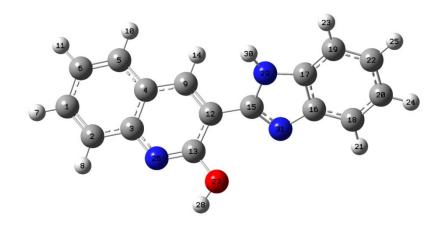
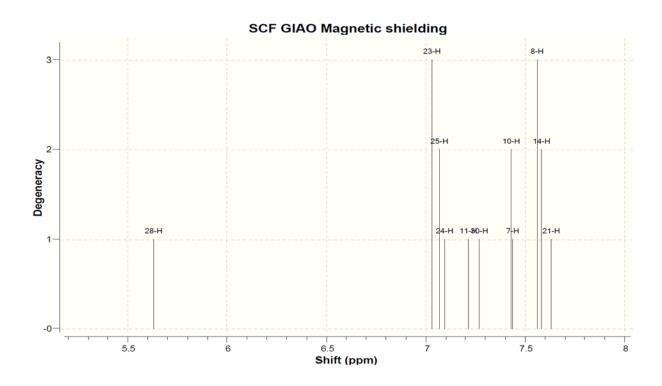
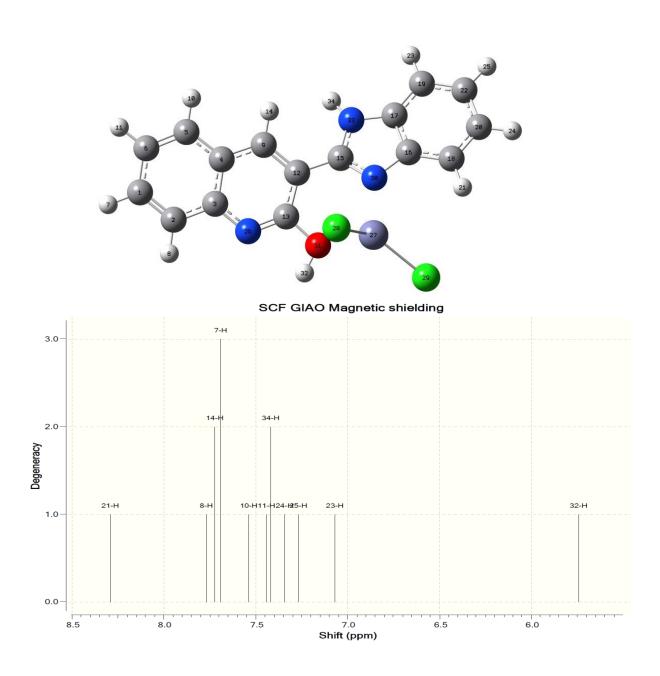
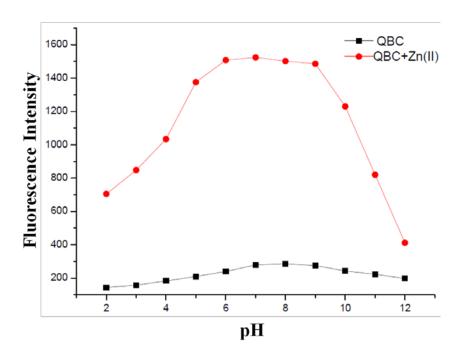





Fig. S15. TD spectra of QBC–Zn²⁺ by Gaussian 03 at B3LYP /6-31G level of theory



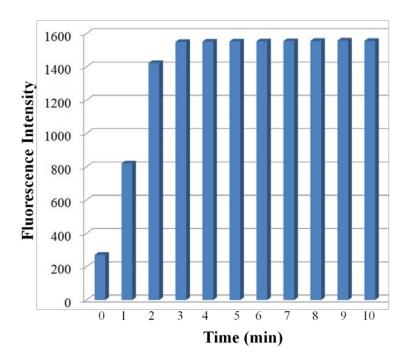

Fig. S16. ¹H NMR spectra of **QBC** by Gaussian 03 at SCF /6-31G level of theory.

Fig. S17. ¹H NMR spectra of **QBC**+Zn²⁺ by Gaussian 03 at SCF /6-31G level of theory

Fig. S18. The effect of pH **QBC** and **QBC** + Zn^{2+} in CH₃CN-H₂O (1;1 v/v) solutions at different pH values.

Fig. S19. The effective time response of **QBC** and **QBC** + Zn^{2+} in (CH₃CN-H₂O, 1;1 v/v, HEPES = 50 mM, pH=7.0)

Experimental Section

Materials and instruments

All solvents were purchased commercially with reagents grade quality. O-phenylenediamine was obtained from Merck and was used without further purification. 3-formyl-2-quinolone was prepared by literature procedure [29]. ¹H NMR and ¹³C NMR spectra were recorded on a Brucker 400 MHz spectrometer, DMSO-*d*₆ solution with TMS as internal standard. LC-MS were determined on a LC-MSD-Trap-XCT Plus based on infusion methods. Absorption spectra were made on a Shimadzu UV-240 spectrophotometer. Fluorescence measurements were performed on a Jasco FP-8200 spectrofluorimeter equipped with quartz cuvettes of 1 cm path length. The excitation and emission slit widths were 5.0 nm. All absorption and emission spectra were recorded at 24 ±1 ^oC. Stock solutions for analysis were prepared (2 x 10⁻³M for compound QBC (CH₃CN/H₂O, 1:1 (v/v), HEPES=50 mM, pH=7.0) immediately before the experiments. The solutions of metal ions were prepared from chloride and nitrate salts of Na⁺, K⁺, Mg²⁺, Ca²⁺, Zr²⁺, Ba²⁺, Cd²⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Cr³⁺, Zn²⁺, Pb²⁺, Hg²⁺, Al³⁺, Fe³⁺, Ce³⁺, Fe²⁺ and Ag⁺.

Absorption and fluorescence titration experiments

Stock solutions of Zn²⁺ ions (100 equiv.) and the receptor **QBC** (4 x 10⁻⁶ M) were prepared in CH₃CN-H₂O (1;1 v/v, HEPES=50 mM, pH=7.0) solutions and used for absorption and fluorescence titration experiments. The titration spectrum of **QBC** with Zn²⁺ (0–100 equiv.) was carried out in CH₃CN-H₂O solutions (1;1 v/v, HEPES=50 mM, pH=7.0) shown in Fig. 2 & 5. For the absorbance and fluorescence experiments 1 cm width and 4 cm height cuvette were used. The excitation was carried out at 380 nm for **QBC** with 5 nm emission slit widths in spectrofluorometer.