A Novel hydrolytic reaction to morphology-controlled TiO₂ micro/nanostructures for enhanced photocatalytic performances

Supporting Information

He Cheng^{1, 2a}, Gongde Chen^{1, 2a}, Weixin Zhang^{1, 2,*}, Maoqin Qiu^{1, 2}, Zeheng Yang^{1, 2}, Xiao Zhu^{1, 2},

Guo Ma^{1, 2}, and Yu Fu¹

¹School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui

230009, PR China

²Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering,

Hefei, Anhui 230009, PR China

^aThese authors are co-first authors, who contributed equally to this work.

*Corresponding author

Tel.: 86-551-62901450; Fax: 86-551-62901450

E-mails: wxzhang@hfut.edu.cn, (Weixin Zhang)

Fig. S1. TEM images of the products prepared hydrothermally with the assistance of urea at

different time intervals: (a) 0.5 h, (b) 1 h.

Fig. S2. XRD patterns of the samples synthesized through hydrothermal treatment of $(NH_4)_2 TiF_6$ with the assistance of H_2O_2 and urea for (a) 0.5 h and (b) 1 h.

Fig. S3. The adsorption curves of RhB solution (initial concentration: 1×10⁻⁵ mol/L) over (a) TiO₂ nanorods, (b) TiO₂ core-shell nanospheres, and (c) TiO₂ microspheres.

Fig. S4. UV-vis spectral changes of RhB solution (intial concentration: 1×10⁻⁵ mol/L) under UV light irradiation in the presence of (a) TiO₂ nanorods, (b) TiO₂ core-shell nanospheres, (c) TiO₂ microspheres, and (d) in the absence of any photocatalyst.

Fig. S5. The dependence of $\ln(C/C_{\theta})$ on UV light irradiation time *t* and their fitting plots: (a) TiO₂ nanorods, (b) TiO₂ core-shell nanospheres, and (c) TiO₂ microspheres.

Fig. S6. Photocatalytic degradation of RhB solution $(1 \times 10^{-5} \text{ mol/L})$ under UV light irradiation in the presence of TiO₂ nanorods. Each point represents the average value of four separate experiments derived from four batches of photocatalysts, and the vertical line represents the error range.

Fig. S7. Photocatalytic degradation of RhB solution with initial concentration of (a) 2×10⁻⁵ and (b) 5×10⁻⁵ mol/L under UV light irradiation in the presence (s1) TiO₂ nanorods and (s2) in the absence of any photocatalyst.

Fig. S8. UV-vis spectral changes of RhB solution under UV light irradiation in the presence of (a, c) TiO₂ nanorods and (b, d) in the absence of any photocatalyst. (Initial concentration: (a, b) 2×10⁻⁵ mol/L, (c, d) 5×10⁻⁵ mol/L).

Fig. S9 FT-IR spectra of the samples: (a) TiO₂ nanorods, (b) TiO₂ core-shell nanospheres,

and (c) TiO₂ microspheres