Electronic Supplementary Information

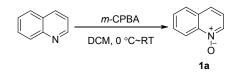
Metal-free regioselective C-3 nitration of quinoline N-oxides with tert-butyl nitrite

Jingjing Zhao,^{ab} Pan Li,^a Chungu Xia^a and Fuwei Li*^a

† State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

‡ Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Email: fuweili@licp.cas.cn


Electronic Supplementary Information Contents:

General Information	ESI2
General Procedure for Quinoline <i>N</i> -Oxide Derivatives	ESI2
Characterization Data of the Quinoline <i>N</i> -Oxide Derivatives	ESI2-ESI4
General Procedure for 3-Nitroquinoline <i>N</i> -Oxide Derivatives	ESI4
Characterization Data of the 3-Nitroquinoline <i>N</i> -Oxide Derivatives Products	ESI4-ESI6
Gram Scale Synthesis of 3-Nitroquinoline <i>N</i> -Oxide 2a	ESI6
General Procedure for Transformations of 3-Nitroquinoline <i>N</i> -Oxide	ESI6-ESI7
General Procedure for Radical Trapping Experiments	ESI7
Reference	ESI8
Copies of ¹ H and ¹³ C NMR Spectra of the Products	ESI9-ESI23

General Information:

All reagents purchased from commercial sources were used as received. Quinoline derivatives were purchased from Adamas-beta. The silica gel for column chromatography was supplied as 300–400 meshes. The ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III spectrometer and are referenced to the residual solvent signals (7.26 ppm for ¹H and 77.0 ppm for ¹³C in CDCl₃, 2.50 ppm for ¹H and 39.5 ppm for ¹³C in d_6 -DMSO). The HRMS spectra were recorded on a Bruker MicroTOF QII spectrometer.

General Procedure for Quinoline N-Oxide Derivatives:

Under vigorous magnetic stirring, 3-chloroperbenzoic acid (*m*-CPBA) (345 mg, 2 mmol) in CH₂Cl₂ (10 mL) was dropped into solution of quinoline derivatives (2 mmol) in CH₂Cl₂ (10 mL) cooled to 0 °C. After the completion of this course, the reaction mixture was allowed up to room temperature and stirred overnight. An aqueous solution of saturated NaHCO₃ was added to the mixture to neutralize residual *m*-CPBA. The resulting mixture was extracted with CH₂Cl₂ (3 × 10 mL). The organic phase were combined and washed with saturated NaCl solution (3 × 5 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure to give crude products, which were purified by column chromatography (silica gel 300–400 mesh, EA: MeOH (8:1) as eluent). The products were identified by ¹H NMR and ¹³C NMR spectra and compared to the previous literatures. Following the above procedure, the following Quinoline *N*-Oxide Derivatives were prepared:

Characterization Data of the Quinoline N-Oxide Derivatives:

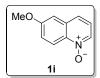
¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.8 Hz, 1 H), 8.52 (dd, J = 6.0, 0.6 Hz, 1 H), 7.85 (d, J = 8.1 Hz, 1 H), 7.79–7.70 (m, 2 H), 7.67–7.60 (m, 1 H), 7.28 (dd, J = 8.5, 6.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 135.6, 130.46, 130.45, 128.7, 128.1, 126.1, 120.9, 119.7.

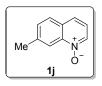
¹H NMR (400 MHz, CDCl₃) δ 8.72 (d, J = 8.9 Hz, 1 H), 8.53 (d, J = 6.0 Hz, 1 H), 8.06 (d, J = 8.8 Hz, 1 H), 7.89 (dd, J = 7.5, 0.9 Hz, 1 H), 7.57 (dd, J = 8.8, 7.6 Hz, 1 H), 7.37 (dd, J = 8.8, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 135.8, 132.7, 130.3, 129.9, 125.1, 122.3, 121.7, 119.7.

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.58 (d, *J* = 6.0 Hz, 1 H), 8.07 (d, *J* = 8.8 Hz, 1 H), 8.01 (d, *J* = 8.6 Hz, 1 H), 7.72 (t, *J* = 8.3 Hz, 1 H), 7.42 (dd, *J* = 8.6, 6.1 Hz, 1 H), 7.19 (d, *J* = 7.8 Hz, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.3, 141.8, 135.7, 130.6, 122.6, 120.9, 119.0, 110.6, 107.3, 56.4.

¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, *J* = 8.8 Hz, 1 H), 8.55 (dd, *J* = 6.0, 0.8 Hz, 1 H), 7.83–7.75 (m, 2 H), 7.59 (dd, *J* = 7.1, 1.1 Hz, 1 H), 7.54–7.41 (m, 5 H), 7.23 (dd, *J* = 8.8, 6.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 141.1, 138.6, 135.3, 129.9, 129.8, 129.5, 129.2, 128.6, 128.1, 124.5, 120.6, 119.1.

¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 8.8 Hz, 1 H), 8.53 (d, J = 5.7 Hz, 1 H), 8.05–7.98 (m, 2 H), 7.79 (d, J = 8.5 Hz, 1 H), 7.72–7.65 (m, 2 H), 7.52–7.48 (m, 2 H), 7.45–7.41 (m, 1 H), 7.31 (dd, J = 8.4, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 140.8, 139.2, 135.5, 130.8, 130.1, 129.1, 128.3, 127.4, 126.2, 125.6, 121.3, 120.3.

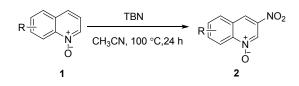

¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 9.3 Hz, 1 H), 8.45 (d, J = 6.0 Hz, 1 H), 7.79 (d, J = 2.1 Hz, 1 H), 7.64–7.57 (m, 2 H), 7.28 (dd, J = 8.4, 6.2 Hz, 1 H) ; ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 135.5, 134.9, 131.1, 130.9, 126.6, 124.5, 122.1, 121.5.


¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 9.3 Hz, 1 H), 8.47 (d, J = 5.6 Hz, 1 H), 7.97 (d, J = 2.0 Hz, 1 H), 7.75 (dd, J = 9.3, 2.0 Hz, 1 H), 7.59 (d, J = 8.5 Hz, 1 H), 7.27 (dd, J = 8.5, 6.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 135.7, 133.6, 131.4, 130.0, 124.5, 123.1, 122.1, 121.6.

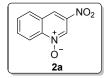
¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, J = 8.9 Hz, 1 H), 8.44 (d, J = 5.9 Hz, 1 H), 7.66–7.58 (m, 2 H), 7.55 (dd, J = 8.9, 1.6 Hz, 1 H), 7.22 (dd, J = 8.4, 6.0 Hz, 1 H), 2.48 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 139.0, 134.9, 132.5, 130.6, 126.9, 125.4, 120.9, 119.5, 21.4.

¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 9.5 Hz, 1 H), 8.34 (dd, J = 6.0, 0.7 Hz, 1 H), 7.57 (d, J = 8.5 Hz, 1 H), 7.32 (dd, J = 9.5, 2.7 Hz, 1 H), 7.19 (dd, J = 8.5, 6.0 Hz, 1 H), 7.05 (d, J = 2.7 Hz, 1 H), 3.88 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 137.1, 133.7, 131.9, 124.8, 122.6, 121.4, 121.3, 105.6, 55.6.

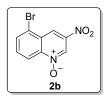
¹H NMR (400 MHz, CDCl₃) δ 8.55–8.52 (m, 2 H), 7.75–7.70 (m, 2 H), 7.45 (dd, *J* = 8.3, 1.4 Hz, 1 H), 7.22 (dd, *J* = 8.4, 6.1 Hz, 1 H), 2.57 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 141.3, 135.9, 130.9, 128.6, 127.8, 126.4, 119.9, 118.6, 22.0.



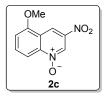
¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, *J* = 6.0, 0.6 Hz, 1 H), 7.57–7.54 (m, 2 H), 7.38–7.30 (m, 2 H), 7.10 (dd, *J* = 8.4, 6.1 Hz, 1 H), 3.12 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 137.1, 133.4, 133.2, 132.3, 127.9, 126.7, 126.2, 120.5, 24.7.


¹H NMR (400 MHz, CDCl₃) δ 8.39 (dd, J = 6.1, 1.0 Hz, 1 H), 7.62–7.56 (m, 1 H), 7.47-7.43 (m, 1 H), 7.35 (dd, J = 8.2, 1.0 Hz, 1 H), 7.17 (dd, J = 8.4, 6.1 Hz, 1 H), 7.08–7.00 (m, 1 H), 4.00 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 138.0, 134.2, 133.6, 128.6, 125.5, 121.2, 120.5, 110.9, 57.0.

General Procedure for 3-Nitroquinoline N-Oxide Derivatives:

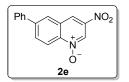

To a 15 mL sealed tube with a stir bar was added 0.3 mmol of quinoline *N*-Oxide 1, 3 mL of CH_3CN and TBN (1.05 mmol, 3.5 equiv.), then the reaction mixture was stirred at 100 °C for 24 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product **2**.

Characterization Data of the 3-Nitroquinoline N-Oxide Derivatives Products:

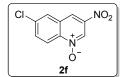


¹H NMR (400 MHz, CDCl₃) δ 9.25 (d, J = 1.9 Hz, 1 H), 8.78 (d, J = 8.8 Hz, 1 H), 8.60 (d, J = 1.3 Hz, 1 H), 8.11 (d, J = 8.1 Hz, 1 H), 7.98 (ddd, J = 8.6, 7.0, 1.3 Hz, 1 H), 7.89–7.78 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 141.9, 133.9, 130.8, 130.6, 129.9, 127.6, 120.8, 120.3; HRMS (ESI) Calcd for C₉H₇N₂O₃

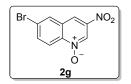
[M+H] 191.0451, Found 191.0448.^[1]


¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, J = 1.9 Hz, 1 H), 8.93 (d, J = 0.9 Hz, 1 H), 8.77 (d, J = 8.8 Hz, 1 H), 8.09 (dd, J = 7.6, 0.8 Hz, 1 H), 7.80 (dd, J = 8.8, 7.6 Hz, 1 H);¹³C NMR (100 MHz, CDCl₃) δ 145.2, 142.5, 134.7, 133.7, 130.2, 127.8, 125.0, 120.2, 120.0; HRMS (ESI) Calcd for C₉H₅BrN₂NaO₃ [M+Na] 290.9383, Found 290.9376.[new compound]

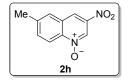
¹H NMR (400 MHz, DMSO-*d*₆) δ 9.21 (m, 1 H), 8.69 (m, 1 H), 8.15–7.97 (m, 2 H), 7.42 (d, J = 7.7 Hz, 1 H), 4.09 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.2, 143.9, 141.2, 135.0, 130.1, 119.3, 115.1, 110.7, 109.6, 56.9; HRMS (ESI) Calcd for C₁₀H₉N₂O₄ [M+H] 221.0557, Found 221.0553. [new compound]



¹H NMR (400 MHz, DMSO- d_6) δ 8.36 (d, J = 1.8 Hz, 1 H), 7.75 (d, J = 8.8 Hz, 1 H), 7.47 (s, 1 H), 7.22 (dd, J = 8.7, 7.4 Hz, 1 H), 6.99 (d, J = 7.1 Hz, 1 H), 6.77 – 6.65 (m, 5 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 143.8, 143.2, 142.0, 137.1, 133.6, 131.3, 130.0, 129. 5, 129.0, 128.8, 125.6, 118.7, 118.6; HRMS (ESI) Calcd for C₁₅H₁₀N₂O₃Na [M+Na] 289.0584, Found 289.0583. [new compound]


¹H NMR (400 MHz, DMSO- d_6) δ 8.32 (d, J = 1.9 Hz, 1 H), 8.12 (d, J = 1.6 Hz, 1 H), 7.87 (d, J = 1.9 Hz, 1 H), 7.76 (d, J = 9.1 Hz, 1 H), 7.51 (dd, J = 9.1, 2.0 Hz, 1 H), 7.03–6.96 (m, 2 H), 6.74-6.70 (m, 2 H), 6.64 (t, J = 7.3 Hz, 1 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 142.4, 142.3, 141.9, 137.6, 132.9, 129.6, 129.3,

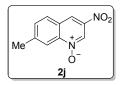
128.9, 128.5, 128.1, 127.3, 121.5, 119.9; HRMS (ESI) Calcd for $C_{15}H_{10}N_2O_3Na$ [M+Na] 289.0584, Found 289.0578. [new compound]


¹H NMR (400 MHz, CDCl₃) δ 9.22 (d, J = 1.8 Hz, 1 H), 8.73 (d, J = 9.3 Hz, 1 H), 8.49 (s, 1 H), 8.08 (d, J = 2.1 Hz, 1 H), 7.89 (dd, J = 9.3, 2.2 Hz, 1 H); ¹³C NMR (100 MHz, DMSO) δ 143.0, 141.8, 135.2, 134.0, 130.1, 129.8, 128.7, 121.5, 120.4; HRMS (ESI) Calcd for C₉H₅ClN₂NaO₃ [M+Na] 246.9880,

Found 246.9881. [new compound]

¹H NMR (400 MHz, DMSO- d_6) δ 9.22 (d, J = 1.6 Hz, 1 H), 8.91 (s, 1 H), 8.72 (d, J = 1.7 Hz, 1 H), 8.47 (d, J = 9.2 Hz, 1 H), 8.16 (dd, J = 9.2, 1.9 Hz, 1 H); ¹³C NMR (100 MHz, DMSO) δ 142.9, 142.0, 136.7, 133.0, 130.2, 129.1, 123.9, 121.4, 120.3; HRMS (ESI) Calcd for C₉H₅BrN₂NaO₃ [M+Na] 290.9383,

Found 290.9376. [new compound]


¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 1.9 Hz, 1 H), 8.66 (d, J = 8.9 Hz, 1 H), 8.51 (d, J = 1.4 Hz, 1 H), 7.85 (s, 1 H), 7.79 (dd, J = 8.9, 1.7 Hz, 1 H), 2.61 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 142.0, 141.6, 136.1, 129.4, 129.3, 127.8, 120.4, 120.0, 21.5; HRMS (ESI) Calcd for C₁₀H₉N₂O₃ [M+H]

205.0612, Found 205.0608. [new compound]

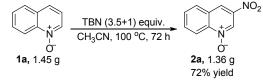
¹H NMR (400 MHz, DMSO- d_6) δ 9.05 (d, J = 2.0 Hz, 1 H), 8.83 (d, J = 1.7 Hz, 1 H), 8.50 (d, J = 9.5 Hz, 1 H), 7.88 (d, J = 2.7 Hz, 1 H), 7.67 (dd, J = 9.5, 2.8 Hz, 1 H), 3.95 (s, 3 H); ¹³C NMR (100 MHz, DMSO) δ 160.1, 142.6, 138.5, 129.4, 127.8, 125.5, 120.8, 120.2, 109.6, 56.1; HRMS (ESI) Calcd for

C₁₀H₈N₂NaO₄ [M+Na] 243.0376, Found 243.0365. [new compound]

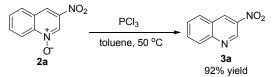
¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 1.9 Hz, 1 H), 8.66 (d, J = 8.9 Hz, 1 H), 8.51 (d, J = 1.4 Hz, 1 H), 7.85 (s, 1 H), 7.79 (dd, J = 8.9, 1.7 Hz, 1 H), 2.61 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 142.0, 141.6, 136.1, 129.4, 129.3, 127.8, 120.4, 120.0, 21.5; HRMS (ESI) Calcd for C₁₀H₉N₂O₃ [M+H]

205.0608, Found 205.0602. [new compound]

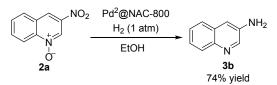
¹H NMR (400 MHz, CDCl₃) δ 9.09 (d, J = 1.8 Hz, 1 H), 8.45 (d, J = 1.8 Hz, 1 H), 7.92–7.83 (m, 1 H), 7.61 (dd, J = 7.9, 5.4 Hz, 2 H), 3.17 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 141.3, 136.9, 134.5, 131.0, 130.0, 129.7, 129.2, 121.0, 24.4; HRMS (ESI) Calcd for C₁₀H₉N₂O₃ [M+H] 205.0608, Found 205.0606. [new


compound]

¹H NMR (400 MHz, CDCl₃) δ 9.59 (d, J = 2.5 Hz, 1 H), 8.98 (d, J = 2.5 Hz, 1 H), 7.66 (t, J = 8.0 Hz, 1 H), 7.59 (dd, J = 8.2, 1.0 Hz, 1 H), 7.29–7.26 (m, 1 H), 4.13 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 142.6, 141.6, 141.5, 132.0, 129.3, 127.3, 121.1, 111.4, 56.3; HRMS (ESI) Calcd for C₁₀H₉N₂O₄ [M+H] 221.0557,

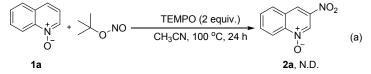

Found 221.0550. [new compound]

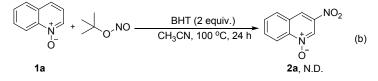
Gram Scale Synthesis of 3-Nitroquinoline N-Oxide 2a:



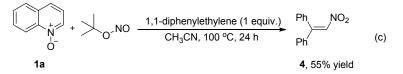
To a reaction kettle with a stir bar was added quinoline *N*-Oxide **1a** (10 mmol, 1.45 g), 30 mL of CH₃CN and TBN (35 mmol, 3.5 equiv.). The reaction mixture was stirred at 100 °C for 48 h, the quinoline *N*-Oxide **1a** did not react completely by TLC. Then additional TBN (10 mmol, 1 equiv.) was added to the reaction solution. The reaction mixture was stirred at 100 °C for another 24 h until the starting material **1a** disappear, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product **2a** (1.36g, 72% yield).

General Procedure for Transformations of 3-Nitroquinoline N-Oxide


To a 15 mL pressure tube with a stir bar was added 0.3 mmol of 3-nitroquinoline *N*-oxide **2a**, 3 mL of toluene, PCl₃ (0.6 mmol, 2 equiv.). The reaction mixture was stirred at 50 °C for 2 h, cooled to room temperature, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product **3a**^[2] (48 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 2.6 Hz, 1 H), 9.05 (d, *J* = 2.4 Hz, 1 H), 8.24 (d, *J* = 8.2 Hz, 1 H), 8.05 (d, *J* = 8.2 Hz, 1 H), 7.95 (ddd, *J* = 8.5, 7.0, 1.4 Hz, 1 H), 7.74 (ddd, *J* = 8.1, 7.0, 1.1 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 144.0, 140.9, 133.4, 132.3, 129.8, 129.8, 128.8, 126.0; HRMS (ESI) Calcd for C₉H₇N₂O₂ [M+H] 175.0510, Found 175.0502.


To a 25 mL Schlenk tubes with a stir bar was added 0.3 mmol of 3-nitroquinoline *N*-oxide **2a**, 3 mL of EtOH, Pd@NAC-800 (80 mg). Then the tube was sealed and pressurized with 1.0 atm H₂ gas after it was vacuumed and flushed with H₂ three times. The reaction mixture was stirred at room temperature for 12 h, poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford the desired product **3b**^[3] (32 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) d 8.50 (d, J = 2.7

Hz, 1 H), 8.00–7.93 (m, 1 H), 7.59–7.56 (m, 1 H), 7.46–7.39 (m, 2 H), 7.21 (d, J = 2.9 Hz, 1 H), 3.95 (s, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 142.7, 139.7, 129.1, 129.0, 126.9, 125.8, 125.6, 114.9; HRMS (ESI) Calcd for C₉H₈N₂ [M+H] 145.0768, Found 145.0760.

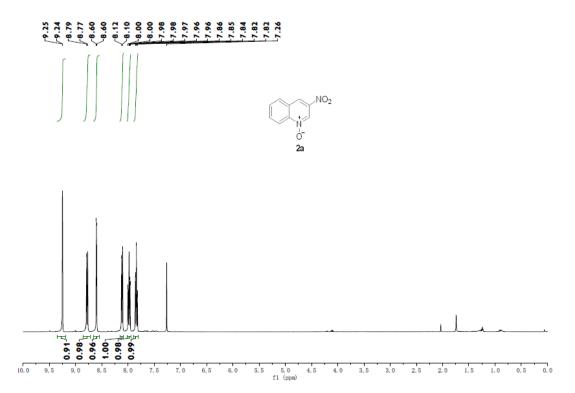

General Procedure for Radical Trapping Experiments:

To a 15 mL pressure tube with a stir bar was added 0.3 mmol of quinoline *N*-Oxide **1a**, 3 mL of CH₃CN, TBN (1.05 mmol, 3.5 equiv.) and TEMPO (0.6 mmol, 2 equiv.). The reaction mixture was stirred at 100 °C for 24 h. And the desired **2a** was not detected by GC-MS.

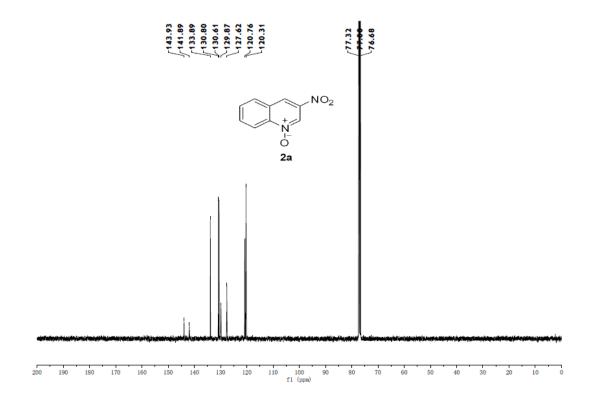
To a 15 mL pressure tube with a stir bar was added 0.3 mmol of quinoline *N*-Oxide **1a**, 3 mL of CH₃CN, TBN (1.05 mmol, 3.5 equiv.) and BHT (0.6 mmol, 2 equiv.). The reaction mixture was stirred at 100 °C for 24 h. And the desired **2a** was not detected by GC-MS.

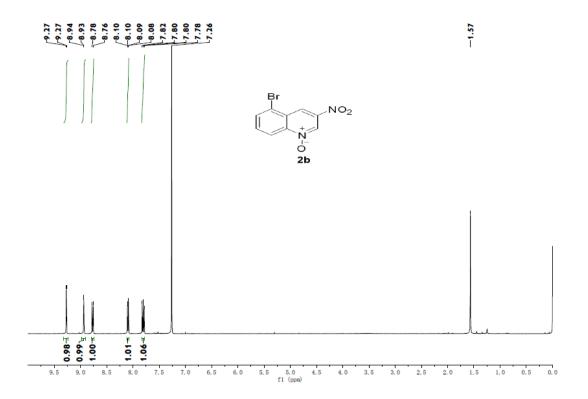
To a 15 mL pressure tube with a stir bar was added 0.3 mmol of quinoline *N*-Oxide **1a**, 3 mL of CH₃CN, TBN (1.05 mmol, 3.5 equiv.) and 1,1-diphenylethylene (0.3 mmol, 1 equiv.). The reaction mixture was stirred at 100 °C for 24 h, cooled to room temperature, and the desired **2a** was not detected by GC-MS. To our delight, we detected the nitroolefin **4**.^[4] The reaction solution was poured into brine and extracted with EtOAc. The combined extracts were dried over MgSO₄, filtered, and evaporated. The residue was purified by column chromatography (petroleum ether/EtOAc) to afford compound **4** in 55% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.95 (s, 1 H), 7.50–7.42 (m, 6 H), 7.36–7.32 (m, 2 H), 7.24–7.19 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 137.0, 135.5, 134.4, 130.9, 129.3, 128.9, 128.84, 128.76, 128.5; HRMS (ESI) Calcd for C₁₄H₁₁NnaO₂ [M+Na] 243.0671, Found 243.0682.

Reference:

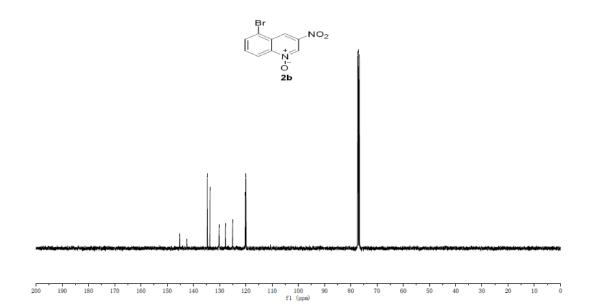

[1] K. S. Sharma, S. Kumari and R. P. Singh, Synthesis., 1981, 316.

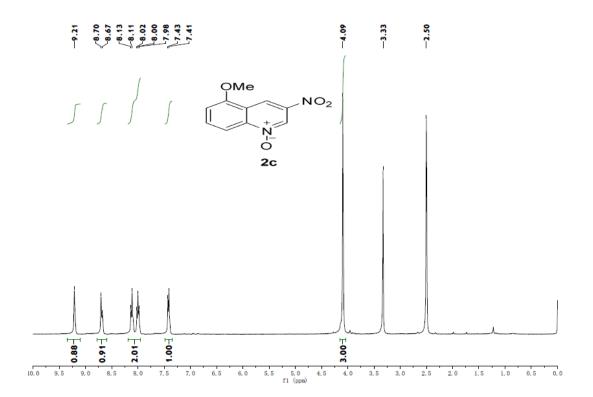
[2] H. Nakagawa, T. Higuchi, K. Kikuchi, Y. Urano and T. Naano, Chem. Pharm. Bull., 1998, 46, 1656.

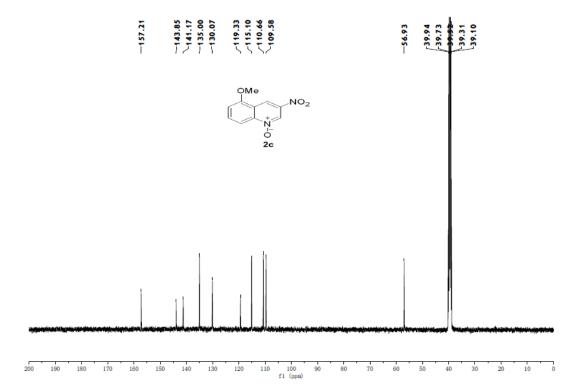

[3] S. Fantasia, J. Windisch and M. Scalone., Adv. Synth. Catal., 2013, 355, 627.

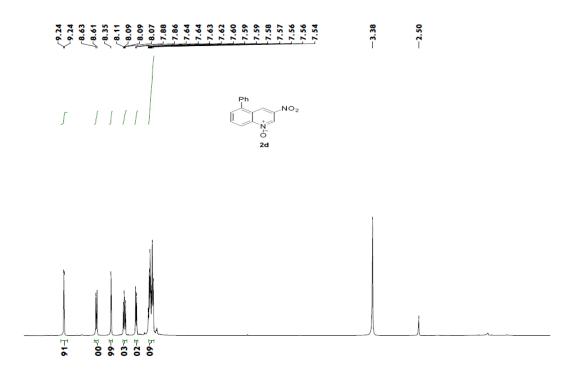

[4] S. Maity, S. Manna, S. Rana, N. Togati, A. Mallick and D. Maiti, J. Am. Chem. Soc., 2013, 135,

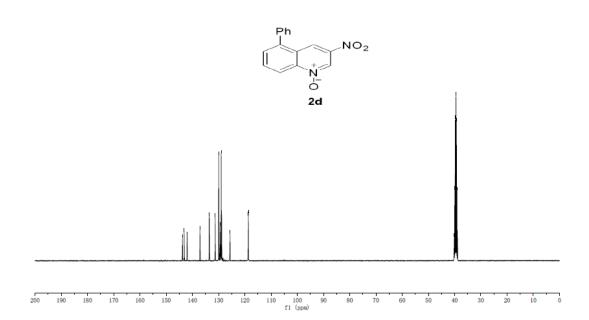
3355.

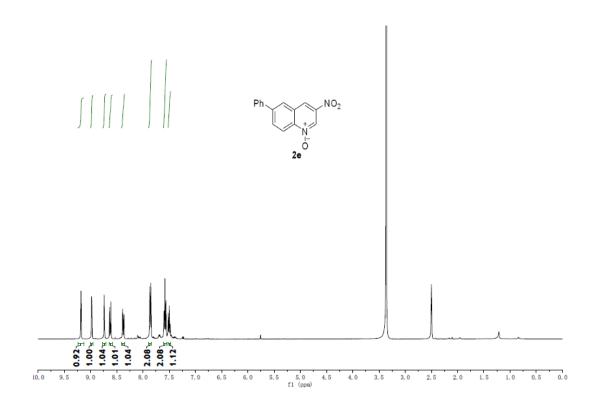

Copies of ¹H and ¹³C NMR Spectra of the Products

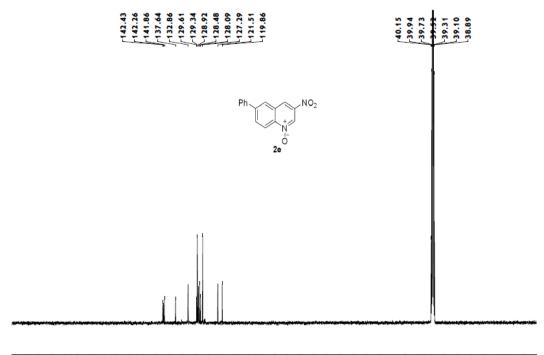


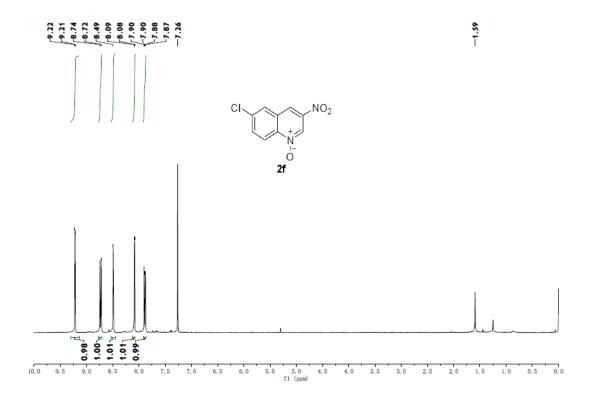


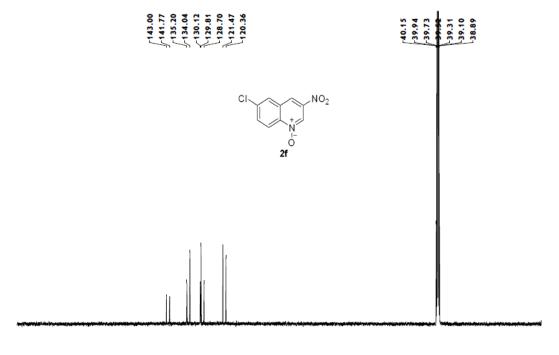


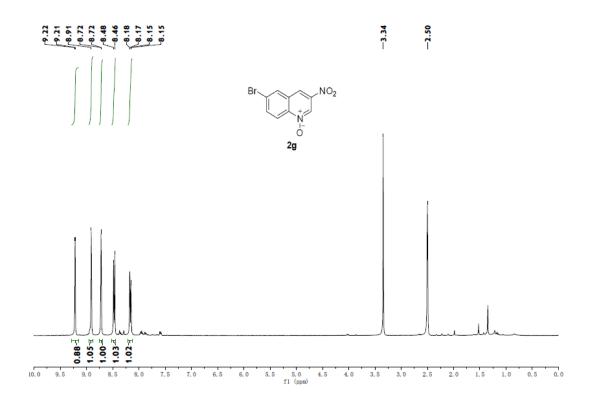


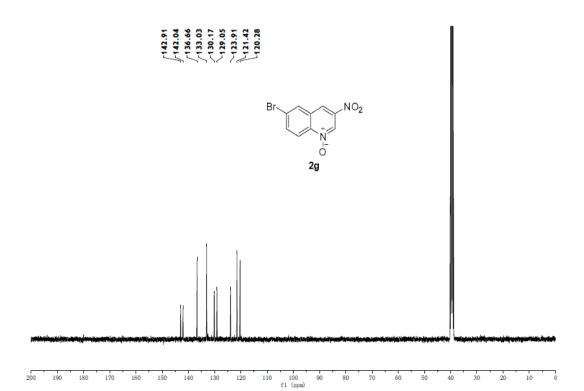


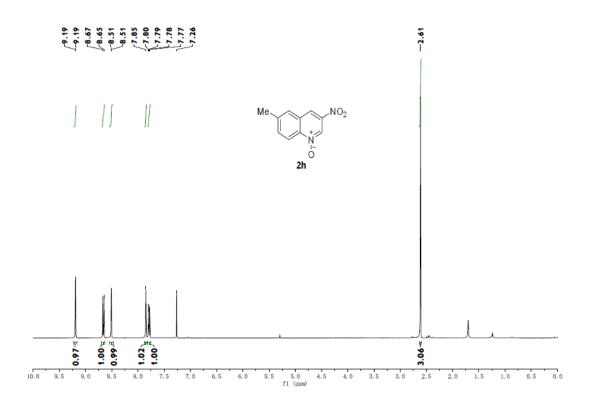


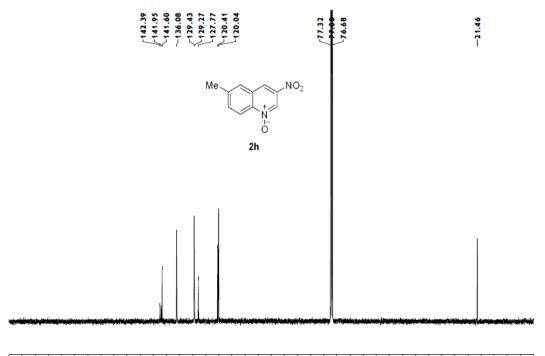

143.75 143.75 143.15 143.15 143.15 143.15 143.15 143.15 143.52 143.52 143.52 143.52 143.53 143.53 143.53 143.53 143.55



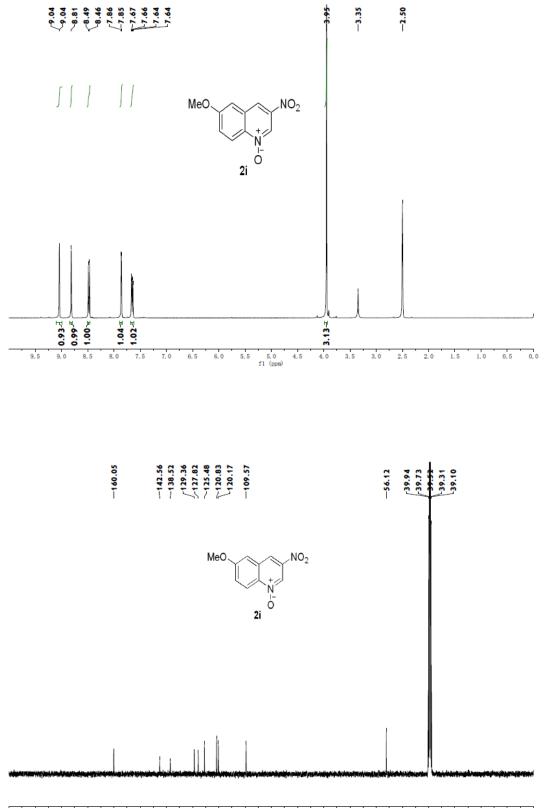


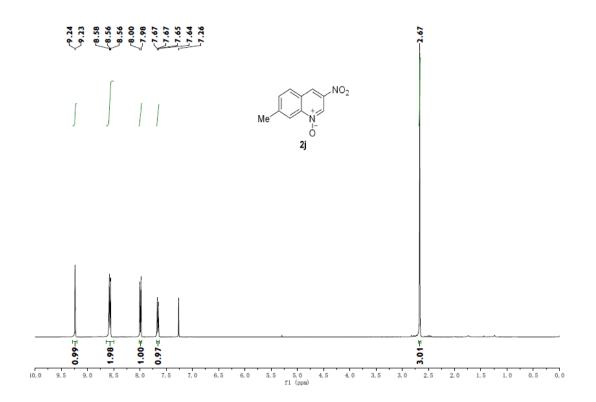

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)



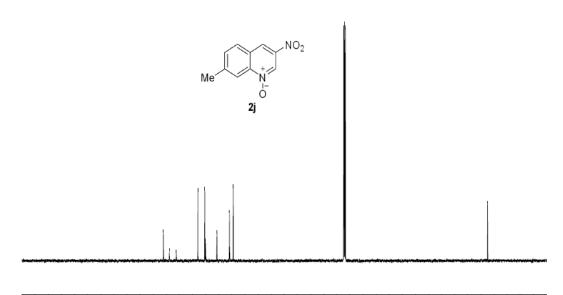


110 100 f1 (ppm) 140 130 120 160 150

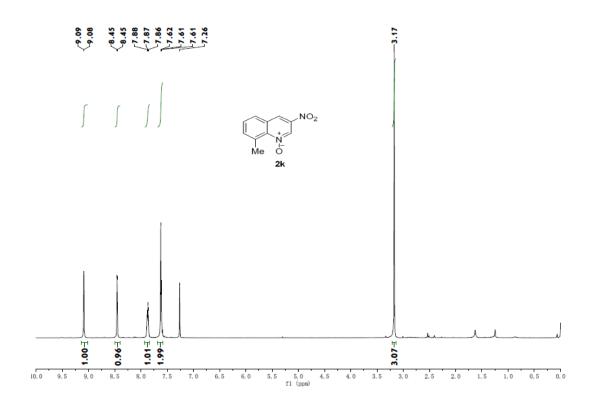




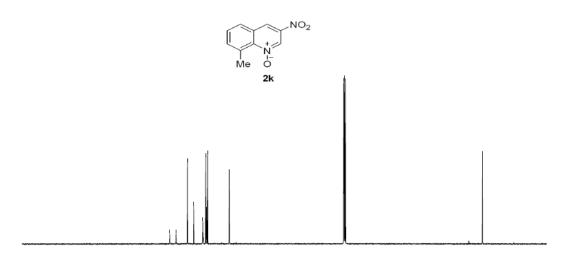
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)



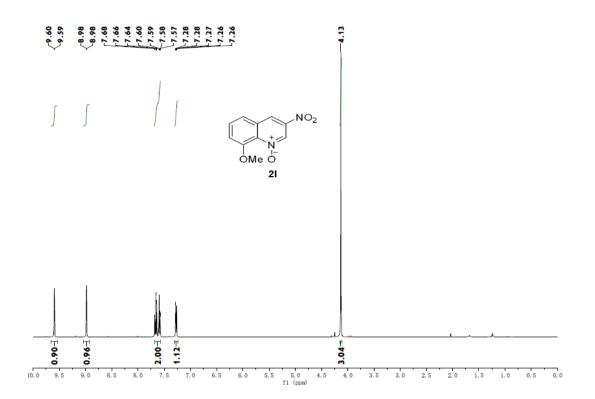
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)



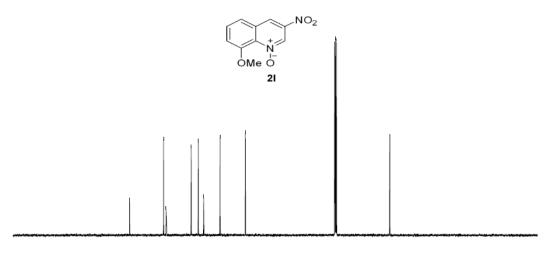
-22.47

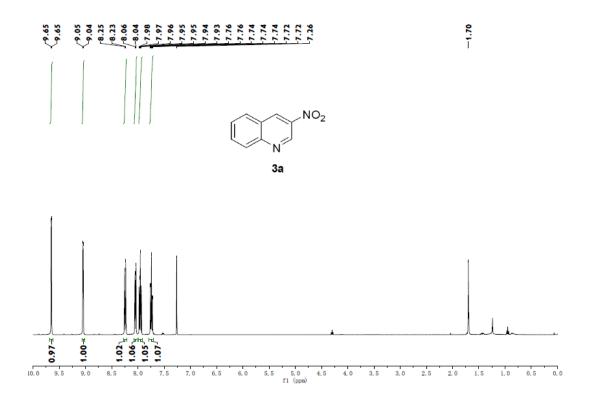


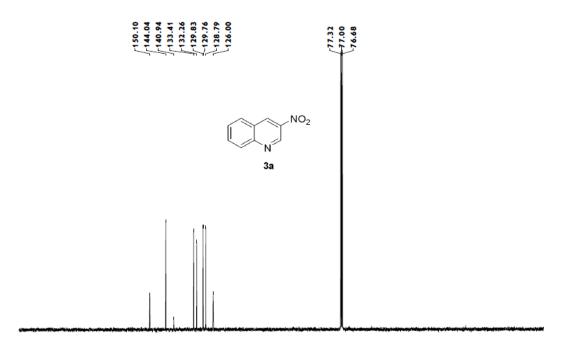
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)



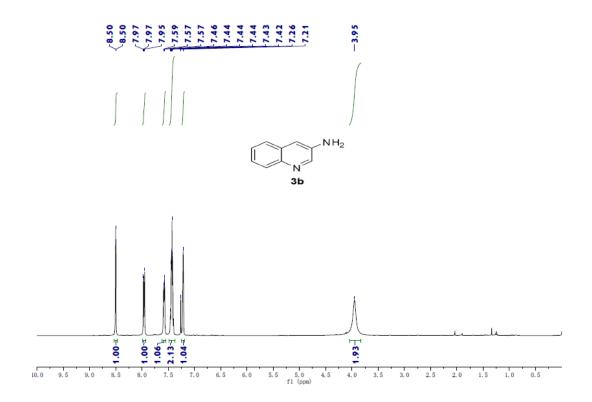
713.62 13.62 13.62 13.63 13.03 13.03 13.03 13.03 12.03 12.00 77.32 77.00 77.66

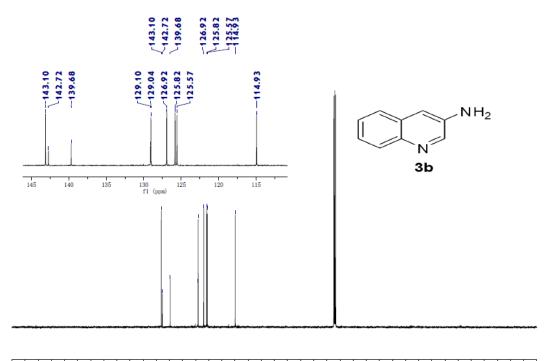

-24.44

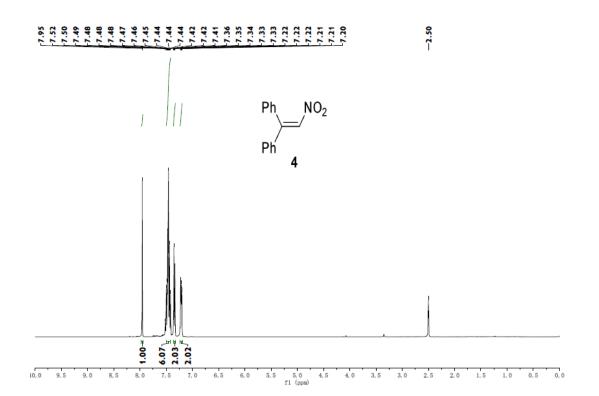

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppn)



-155.54 -155.54 -152.59 -141.45 -112.03 -122.03 -111.40-111.40




200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppn)



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

140 130 120 110 100 90 80 fl (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)