Electronic Supplementary Information

Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability,

mechanical property and flame retardancy of polypropylene

Bihe Yuan,^{a,b} Lei Song,^{*,a} Kim Meow Liew,^c Yuan Hu^{*,a,b}

^a State Key Laboratory of Fire Science, University of Science and Technology of

China, Hefei 230026, China

^b USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban

Public Safety, Suzhou Institute for Advanced Study, University of Science and

Technology of China, Suzhou 215123, China

^c Department of Architecture and Civil Engineering, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong

* Correspondence to: Yuan Hu; Lei Song.

Tel/fax: +86-551-63601664

E-mail: yuanhu@ustc.edu.cn; leisong@ustc.edu.cn

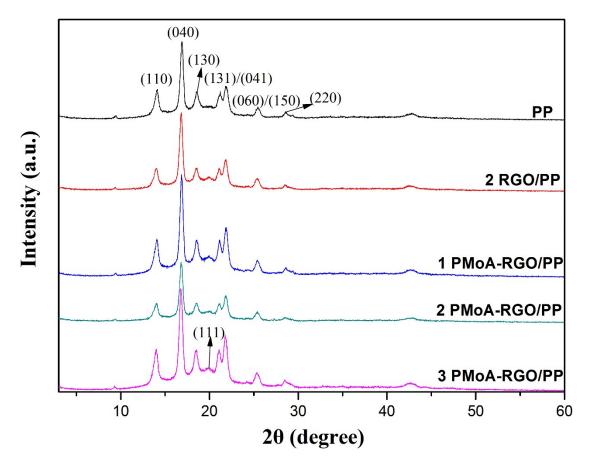


Fig. S1 XRD patterns of neat PP and its nanocomposites

Both neat PP and its nanocomposites exhibit the characteristic (110), (040), (130), (111), (131)/(041), (060)/(150) and (220) planes of α -crystal form of PP.¹

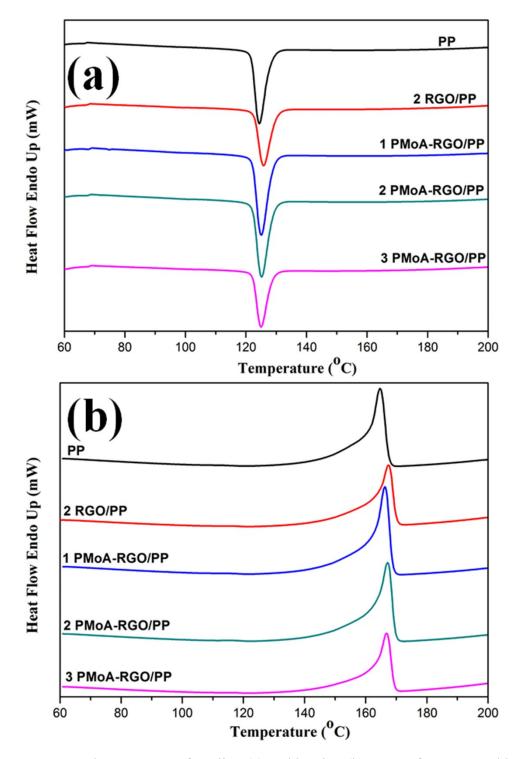


Fig. S2 DSC thermograms of cooling (a) and heating (b) scans of neat PP and its

nanocomposites.

Sample	$T_{c}(^{o}C)$	$\Delta H_{c} (J \cdot g^{-})$	T _m	ΔH_{m}	X _c (%)
		¹)	(°C)	$(J \cdot g^{-1})$	
РР	124.3	76.2	164.7	68.2	32.6
2 RGO/PP	125.9	77.1	167.6	66.7	32.6
1 PMoA-RGO/PP	125.1	78.4	166.4	68.9	33.3
2 PMoA-RGO/PP	125.1	77.4	167.2	66.3	32.4
3 PMoA-RGO/PP	124.9	77.4	166.9	64.8	32.0

Table S1. DSC results of neat PP and its nanocomposites.

Fig. S2 shows the DSC curves of crystallization and melting processes of PP and its nanocomposites. The maximum crystallization (T_c) and melting temperature (T_m), crystallization (ΔH_c) and melting enthalpy (ΔH_m), and degree of crystallinity (X_c) are listed in Table S1. X_c is calculated using the following equation: $X_c = \Delta H_m / (f\Delta H_0)$, where $\Delta H_0 = 209 \text{ J} \cdot \text{g}^{-1}$ is the theoretical melting enthalpy of 100% crystalline PP,² and f is the weight fraction of PP in the nanocomposite. The incorporation of these nanomaterials is observed to exert little effect on the crystallization, melting behavior and crystallinity of PP.

Reference

B. H. Yuan, C. L. Bao, L. Song, N. N. Hong, K. M. Liew and Y. Hu, *Chem. Eng. J.*, 2014, 237, 411.

2 Y. Li, J. Zhu, S. Wei, J. Ryu, L. Sun and Z. Guo, Macromol. Chem. Phys.,

2011, **212**, 1951.