Supporting Information for

The Coordination-driven of Self-assembly: Construction of Fe₃O₄/Grapnene Hybrid

3D Framework and Its Long Cycle Lifetime for Lithium-ion Batteries

Zhimin Ren, Siqi Yu, Xinxin Fu, Lin Shi, Chunxiao Sun, Chenyao Fan, Qi Liu,

Guodong Qian and Zhiyu Wang*

State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.

Corresponding Author Zhiyu Wang: Tel/Fax: +86-571-87952267; E-mail: wangzhiyu@zju.edu.cn.

Fig. S1. Digital photographs of Fe_3O_4 /Graphene hybrid framework (a, c and e) and pure graphene (b and d) by hydrothermal with different volume of GO solution. a, b)

 V_{GO} =6 mL; c, d) V_{GO} =4 mL; e) V_{GO} =2 mL; f) Photographs of the product under the same condition with (a) except the different Fe³⁺ source, indicating the existence of synergistic effect of self-assembly between Fe₃O₄ and graphene

Fig. S2. Size distribution of a) bare Fe₃O₄; b) Fe₃O₄/G hybrid framework

Fig. S3. The TEM images of Fe₃O₄/G with different volume of GO: a) 4 mL; b) 6 mL;

c) 8 mL; d) 10 mL.

Fig. S4. N₂ adsorption/desorption isotherms and pore size distribution of (a, b) Fe₃O₄-

G mixed and (c, d) bare Fe₃O₄.

Fig. S5. The full spectrum (a) and core-level O1s (b) XPS spectra of Fe_3O_4/G hybrid framework.

Fig. S6. (a) Cyclic voltammogram curves of bare Fe_3O_4 at a scan rate of 0.1 mVs⁻¹; (b) Charge and discharge profiles of the bare Fe_3O_4 electrode at a current density of 500 mAg⁻¹.