Electronic Supplementary Information

for

Ni-Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H₂ evolution

Yusuke Yamada,*^{ab} Shinya Shikano^a and Shunichi Fukuzumi*^{acd}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; yamada@chem.eng.osaka-u.ac.jp
^b Department of Applied Chemistry & Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
^c Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan
Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
^d Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea

Fig. S1 Particles size distribution of (a) Cu nanoparticles, (b) Ni-Cu nanoparticles and (c) Ni nanoparticles determined by dynamic laser scattering.

Fig. S2 (a) TEM image of Ni-Cu/SiO₂ prepared by the impregnation method using Ni-Cu nanoparticles. (b) HAADF-STEM image of Ni-Cu/SiO₂ prepared by the impregnation method using Ni(NO₃)₂ and Cu(NO₃)₂.

Fig. S3 TEM images of Ni-Cu/CeO₂ prepared by the impregnation method using (a) Ni-Cu nanoparticles or (b) $Cu(NO_3)_2$ and $Ni(NO_3)_2$.