Supporting Information

$Multifunctional\ sandwich-like\ mesoporous\ silica-Fe_3O_4-graphene$

oxide nanocomposites for removal of methylene blue from water

Fubo Gu, Man Liang, Dongmei Han, Zhihua Wang*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Fig.S1 TEM images of Fe₃O₄/GO (a), Fe₃O₄/GO@mSiO₂ (b), GO@mSiO₂ (c)

Fig.S2 XRD patterns (a) of GO, Fe_3O_4/GO , $GO@mSiO_2$ and $Fe_3O_4/GO@mSiO_2$ Low-angle XRD patterns (b) of $GO@mSiO_2$ and $Fe_3O_4/GO@mSiO_2$

Fig.S3 XPS spectra of GO, Fe₃O₄/GO, GO@mSiO₂ and Fe₃O₄/GO@mSiO₂

Fig.S4 Influence of pH on the adsorption capacity of Fe₃O₄/GO@mSiO₂ (a) and GO@mSiO₂ (b)

Fig. S5 Zeta potential vs. pH curves of Fe₃O₄/GO@mSiO₂ and GO@mSiO₂

Fig.S6 Adsorption models of pseudo-first-order (a), pseudo-second-order (b), Elovich (c) onto $Fe_3O_4/GO@mSiO_2$

	q _{a arm}	Pse	udo–first or	der	Elovich				
(mg/L)	(mg/g)	q _{e,cal} (mg/g)	<i>k</i> 1 (min ⁻¹)	R ²	α (mg/g∙min)	β (g·mg ⁻¹)	R^2		
5	34.0	18.8	0.02108	0.8710	400.28	0.079	0.8242		
10	42.0	31.9	0.02844	0.9478	1.11×10^{4}	0.5168	0.8427		
15	53.2	32.8	0.03586	0.9579	0.4501	0.075	0.9437		
25	60.8	63.6	0.03505	0.9901	33.47	0.0702	0.9796		
50	125.1	114.8	0.02443	0.9716	1444.23	0.074	0.9676		

Table S1 Coefficients of a pseudo-first-order and Elovich kinetic models for MB on Fe_3O_4/GO@mSiO_2

Fig.S7 Adsorption models of pseudo-first-order (a), pseudo-second-order (b), Elovich (c) onto GO@mSiO₂

Table	S2	Coeffic	cients	of a	pseudo	-first-	order	and	Elovich	kinetic	models	for	MB	on	GO	@mSi($)_{2}$
	~ -														(.		- 4

C	q _{e ern}	Pse	udo–first or	der	Elovich			
(mg/L)	(mg/g)	q _{e,cal} (mg/g)	$q_{e,cal}$ k_1 (mg/g) (min ⁻¹)		a (mg/g∙min)	β (g·mg ⁻¹)	R^2	
50	243.3	42.2	0.02306	0.7544	1.96 × 10′	0.07927	0.8837	
75	260.7	48.4	0.04846	0.2956	4548	0.03751	0.7923	
100	270.4	345.7	0.06793	0.6669	1698	0.02753	0.9346	
125	281.8	119.8	0.02711	0.8634	2052	0.03277	0.9841	
150	305.3	166.2	0.03113	0.9727	134.9	0.01883	0.9486	

Adsorbent	q _{max} (mg/g)	BET (m²/g)	Q_m (mg/m ²)	Conc. (mg/L)	рН	Isotherm	Ref
graphene– Fe ₃ O ₄ @carbon	73.3	-	-	50	acid	Langmuir	[1]
Fe ₃ O ₄ -SiO ₂ -GO	97.0	-	-	25-35	-	Langmuir	[2]
Fe ₃ O ₄ -G-MWCNT	65.8	-	-	10-30	6.4	Freundlich	[3]
magnetic-GO	64.2	-	-	-	8	Langmuir	[4]
MCM-22	57.6	490	0.118	-	-	Langmuir	[5]
SBA-15	49.0	659	0.074	-	5.5	Freundlich	[6]
MCM-41	48.0	1,059	0.045	-	11	Redlich-peterson model	[7]
Fe ₃ O ₄ /GO@mSiO ₂	125.1	179	0.698	5-50	5	Langmuir	Present work
GO@mSiO ₂	305.3	634	0.369	50-150	4	Langmuir	Present work

Table S3 Comparison of the adsorption capacities of MB onto various adsorbents

Table S4 Parameters of Langmuir and Freundlich adsorption for MB onto Fe₃O₄/GO@mSiO₂

Т (°С)		Langmu	ir	Freundlich			
	q _{max} (mg/g)	b (L/g)	R ²	n	K	R ²	
25	62.7	592.80	0.9994	0.432	7354.5	0.6813	
45	110.0	0.0016	0.9989	1.995	1164.7	0.9193	
65	121.7	1511.5	0.9922	1.137	1657.2	0.7794	

Fig.S9 Langmuir (a) and Freundlich (b) adsorption isotherm for MB onto GO@mSiO₂

T (°C)		Langmu	ir	Freundlich				
	q _{max} (mg∕g)	b (L/mg)	R^2	n	K	R ²		
25	312.5	0.5423	0.9916	5.38	211.6	0.6684		
45	454.5	0.0085	0.9960	0.67	10.48	0.9813		
65	121.7	0.0541	0.9958	3.25	61.35	0.6146		

Table S6 Thermodynamic parameters for MB adsorbed onto Fe₃O₄/GO@mSiO₂

T	Q_e	K ,	ΔG	ΔH	ΔS
(K)	(mg/g)	а	(kJ/mol)	(kJ/mol)	(J/mol·K)
298	26.1	4.16	-11.7		
318	24.1	1.83	-8.83	-1928.1	-5547.1
338	22.8	1.05	-8.74		

Table S7 Thermodynamic parameters for MB adsorbed onto $GO@mSiO_2$

T	Q_e	K,	ΔG	ΔH	ΔS
(K)	(mg/g)	а	(kJ/mol)	(kJ/mol)	(J/mol·K)
298	243.3	4.22	-10.3		
318	91.61	1.11	-4.84	-65.40	186.73
338	81.09	0.89	-2.95		

Fig. S10 Multicyclic adsorption efficiency of Fe₃O₄/GO@mSiO₂ and GO@mSiO₂

References

- W. Fan, W. Gao, C. Zhang, W. Tjiu, J. Pan and T. Liu, J. Mater. Chem., 2012, 22, 25108-25115. 1
- Y. Yao, S. Miao, S. Yu, L. Ma, H. Sun and S. Wang, *Colloid. Interf. Sci.*, 2012, **379**, 20-27. P. Wang, M. Cao, C. Wang, Y. Ao, J. Hou and J. Qian, *Appl. Surf. Sci.*, 2014, **290**, 116-124. 2
- 3
- 4
- 5
- J. Deng, X. Zhang, G. Zeng, J. Gong, Q. Niu and J. Liang, *Chem. Eng. J.*,2013, **226**, 189-200. S. Wang, H. Li and L. Xu, *J. Colloid. Interf. Sci.*, 2006, **295**, 71-78. C. H. Huang, K. P. Chang, H. D. Ou, Y. C. Chiang and C. F. Wang, *Micropor. Mesopor. Mat.*, 2011, **141**, 102-6 109.
- 7 P.Monash and G. Pugazhenthi, Korean. J. Chem. Eng., 2010, 27, 1184-1191.