In the abbreviation for the names of divalent species under study the number **1**, **2**, **3**, **4**, and **5** stand for carbenes, silylenes, germylenes, stannylenes, and plumbylenes respectively. The subscripts s, t, and X refer to singlet, triplet, and halogen atoms (X=F, Cl, Br, I).

Compound	E	Compound	E	AE
(Singlets)	(kcal/mol)	(Triplets)	(kcal/mol)	$\Delta \mathbf{E}_{st}$
1 _{s-F}	-1235.67	1_{t-F}	-1235.16	0.51
1 _{s-Cl}	-1140.16	1_{t-Cl}	-1135.87	4.29
1 _{s-Br}	-1108.12	1_{t-Br}	-1103.27	4.85
1 _{s-I}	-1082.42	1 _{t-I}	-1076.84	5.58
2 _{s-F}	-1177.12	2_{t-F}	-1154.34	22.78
2 _{s-Cl}	-1084.06	$2_{\text{t-Cl}}$	-1056.88	27.18
2_{s-Br}	-1052.31	2_{t-Br}	-1024.51	27.80
2 _{s-I}	-1028.21	2 _{t-I}	-999.07	29.14
3 _{s-F}	-1164.15	3_{t-F}	-1140.29	23.86
3 _{s-Cl}	-1070.56	3 _{t-Cl}	-1042.44	28.12
3 _{s-Br}	-1038.73	3 _{t-Br}	-1010.03	28.70
3 _{s-I}	-1014.81	3 _{t-I}	-984.75	30.06
4 _{s-F}	-1144.49	4_{t-F}	-1122.5	21.99
4 _{s-Cl}	-1051.19	4_{t-Cl}	-1024.4	26.79
4 _{s-Br}	-1019.57	$4_{\text{t-Br}}$	-992.10	27.47
4 _{s-I}	-996.04	4 _{t-I}	-967.19	28.85
5 _{s-F}	-1169.09	5 _{t-F}	-1141.69	27.40
5 _{s-Cl}	-1075.24	5 _{t-Cl}	-1040.45	34.79
5 _{s-Br}	-1034.96	5 _{t-Br}	-1001.00	33.96
5 _{s-1}	-1018.44	5 _{t-1}	-978.46	39.98

Table 1 Calculated total bonding energies (E) and the ΔE_{st} for the two series of BHEs ($\mathbf{1}_{s-X} vs. \mathbf{1}_{t-X}$, $\mathbf{2}_{s-X} vs. \mathbf{2}_{t-X}$, $\mathbf{3}_{s-X} vs. \mathbf{3}_{t-X}$, $\mathbf{4}_{s-X} vs. \mathbf{4}_{t-X}$ and $\mathbf{5}_{s-X} vs. \mathbf{5}_{t-X}$ with X =F, Cl, Br and I) at UB3LYP/TZ2P.

Table 2 Calculated bonding energies (E) and the ΔE_{st} for the two series of BHEs	$(1_{s-X} vs. 1_{t-X}, 2_{s-X})$
$_X vs. 2_{t-X}, 3_{s-X} vs. 3_{t-X}, 4_{s-X} vs. 4_{t-X} and 5_{s-X} vs. 5_{t-X} with X = F, Cl, Br and I) at MP2$	/6-311++g**.

Compound	Е	Compound	E	ΔEat
(Singlets)	(hartree)	(Triplets)	(hartree)	(kcal/mol)
1 _{s-F}	-363.52	1 _{t-F}	-363.52	2.89
1 _{s-Cl}	-193.86	1 _{t-Cl}	-193.85	7.29
1 _{s-Br}	-190.28	1 _{t-Br}	-190.27	8.95
1_{s-I}	-186.72	1_{t-I}	-186.70	11.55
2. 5	-329 43	2	-329 41	16.96
2 ₆ Cl	-159.77	2 t Cl	-159.74	21.06
2 _{s-Br}	-156.20	2_{t-Br}	-156.16	22.80
2 _{s-I}	-152.64	2 _{t-I}	-152.60	25.38
3 _{s-F}	-329.34	3 _{t-F}	-329.30	24.52
3 _{s-Cl}	-159.68	3 _{t-Cl}	-159.63	28.54
3 _{s-Br}	-156.11	3 _{t-Br}	-156.06	30.24
3 _{s-I}	-152.55	3 _{t-I}	-152.49	32.81
4 _{s-F}	-328.95	4 _{t-F}	-328.91	29.07
4 _{s-Cl}	-159.29	4 _{t-Cl}	-159.24	33.06
4 _{s-Br}	-155.72	4 _{t-Br}	-155.64	49.80
4 _{s-I}	-152.16	4 _{t-I}	-152.08	49.06
5 _{s-F}	-329.05	5 _{t-F}	-328.98	40.70
5 _{s-Cl}	-159.39	5 _{t-Cl}	-159.32	44.53
5 _{s-Br}	-155.82	5 _{t-Br}	-155.74	51.11
5 _{s-I}	-152.26	5 _{t-I}	-152.18	51.07

Table 3 Calculated sum of electronic and thermal free energies (E), zero-point vibrational energy (ZPVE), and the ΔE_{st} (in kcal/mol) for the two series of BHEs ($\mathbf{1}_{s-X} vs. \mathbf{1}_{t-X}, \mathbf{2}_{s-X} vs. \mathbf{2}_{t-X}, \mathbf{3}_{s-X} vs. \mathbf{3}_{t-X}$) with X =F, Cl and Br) at CBS-QB3.

Compound	Е	ZPVE	Compound	Е	ZPVE	A.F.
(Singlets)	(Hartree)	(kcal/mol)	(Triplets)	(kcal/mol)	(kcal/mol)	ΔE_{st}
1 _{s-F}	-364.98	31.04	1_{t-F}	-364.98	31.27	1.42
1_{s-Cl}	-1085.67	29.16	1_{t-Cl}	-1085.66	29.34	4.32
1 _{s-Br}	-5313.49	28.51	$1_{\text{t-Br}}$	-5313.48	28.66	4.93
1_{s-I}			1_{t-I}			
2 _{s-F}	-616.43	28.85	2_{t-F}	-616.40	29.08	18.81
2 _{s-Cl}	-1337.12	27.16	2_{t-Cl}	-1337.09	27.31	21.61
2 _{s-Br}	-5564.95	26.51	$2_{\text{t-Br}}$	-5564.91	26.63	22.21
2_{s-I}			2_{t-I}			
3 _{s-F}	-2403.95	28.44	3 _{t-F}	-2403.92	28.63	21.68
3 _{s-Cl}	-3124.64	26.74	$3_{\text{t-Cl}}$	-3124.60	26.84	24.73
3 _{s-Br}	-7352.47	26.09	$3_{\text{t-Br}}$	-7352.43	26.15	25.38
3 _{s-I}			3 _{t-I}			

Table 4 Calculated sum of electronic and thermal free energies (E), zero-point vibrational energy (ZPVE), and the ΔE_{st} (in kcal/mol) for the two series of BHEs ($\mathbf{1}_{s-X} vs. \mathbf{1}_{t-X}, \mathbf{2}_{s-X} vs. \mathbf{2}_{t-X}, \mathbf{3}_{s-X} vs. \mathbf{3}_{t-X}$) with X =F, Cl and Br) at G4MP2.

Compound	E	ZPVE	Compound	E	ZPVE	٨E
(Singlets)	(Hartree)	(kcal/mol)	(Triplets)	(kcal/mol)	(kcal/mol)	ΔE_{st}
1 _{s-F}	-364.90	31.22	1 _{t-F}	-364.90	31.44	2.52
1_{s-Cl}	-1085.58	29.24	1_{t-Cl}	-1085.58	29.41	5.02
1 _{s-Br}	-5312.92	28.63	1_{t-Br}	-5312.91	28.76	5.71
1_{s-I}			1_{t-I}			
			-			
2_{s-F}	-616.34	29.14	2_{t-F}	-616.31	29.32	19.99
2_{s-Cl}	-1337.03	27.28	2_{t-Cl}	-1336.99	27.38	22.49
2 _{s-Br}	-5564.37	26.65	2_{t-Br}	-5564.33	26.73	23.25
2 _{s-I}			2 _{t-I}			
3 _{s-F}	-2403.64	28.73	3 _{t-F}	-2403.60	28.90	22.12
3 _{s-Cl}	-3124.32	26.85	3 _{t-Cl}	-3124.28	26.94	25.09
3 _{s-Br}	-7351.66	26.23	3 _{t-Br}	-7351.62	26.26	25.93
3 _{s-I}			3 _{t-I}			

Table 5 Comparison between the stability of our divalent species (*B*HËs: $\mathbf{1}_{X}$ - $\mathbf{3}_{X}$) with their corresponding Arduengo's (*N*HËs) by considering their energy differences, $\delta(\Delta E_{st}) = (\Delta E_{st}^{NHEs} - \Delta E_{st}^{BHEs})$, (in kcal/mol) at G4MP2.

Х	1_{X}	2_{X}	3_{X}
F		14.04	8.72
Cl	23.34	1.19	-4.56
Br	16.25	-4.65	-9.86
Ι			

Table 6 Calculated bond length (R1–R4) in Å, bond angles (A1–A3) and dihedral angles (D1) in Degree (°), for the two series of BHEs ($\mathbf{1}_{s-X} vs. \mathbf{1}_{t-X}, \mathbf{2}_{s-X} vs. \mathbf{2}_{t-X}, \mathbf{3}_{s-X} vs. \mathbf{3}_{t-X}, \mathbf{4}_{s-X} vs. \mathbf{4}_{t-X}$ and $\mathbf{5}_{s-X} vs. \mathbf{5}_{t-X}$ with X =F, Cl, Br and I) at UB3LYP/TZ2P.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	D 1	D2	D2	D4	B_B	A 1	4.2	12	*D1
$ \begin{array}{c} \mathbf{L}_{e,\mathrm{F}} & 1.312 & 1.331 & 1.578 & 1.391 & 2.303 & 102.8 & 94.1 & 107.9 & 58.3 \\ \mathbf{L}_{e,\mathrm{CI}} & 1.500 & 1.929 & 1.575 & 1.390 & 2.343 & 102.4 & 93.1 & 108.0 & 61.0 \\ \mathbf{L}_{s,\mathrm{F}} & 1.500 & 1.929 & 1.575 & 1.391 & 2.348 & 102.5 & 93.5 & 107.5 & 60.2 \\ \mathbf{L}_{s,\mathrm{I}} & 1.495 & 2.144 & 1.571 & 1.390 & 2.286 & 99.7 & 94.5 & 106.6 & 61.4 \\ \mathbf{L}_{\mathrm{F}} & 1.547 & 1.336 & 1.587 & 1.378 & 2.510 & 108.4 & 104.9 & 110.9 & 0.0 \\ \mathbf{L}_{e,\mathrm{CI}} & 1.542 & 1.761 & 1.585 & 1.380 & 2.521 & 109.7 & 104.1 & 111.1 & 0.0 \\ \mathbf{L}_{e,\mathrm{EI}} & 1.538 & 1.538 & 1.582 & 1.382 & 2.513 & 109.5 & 104.3 & 110.9 & 0.0 \\ \mathbf{L}_{e,\mathrm{I}} & 1.532 & 2.150 & 1.579 & 1.383 & 2.500 & 109.4 & 104.6 & 110.7 & 0.0 \\ \hline \mathbf{L}_{e,\mathrm{I}} & 1.532 & 2.150 & 1.579 & 1.383 & 2.500 & 109.4 & 104.6 & 110.7 & 0.0 \\ \hline \mathbf{L}_{e,\mathrm{I}} & 2.037 & 1.342 & 1.545 & 1.399 & 2.449 & 73.3 & 95.4 & 109.9 & 66.8 \\ 2_{e,\mathrm{CI}} & 2.041 & 1.766 & 1.533 & 1.406 & 2.395 & 71.9 & 92.7 & 108.8 & 72.1 \\ \hline 2_{e,\mathrm{B}} & 2.037 & 1.340 & 1.530 & 1.407 & 2.387 & 71.1 & 93.5 & 108.7 & 71.1 \\ \hline 2_{e,\mathrm{I}} & 2.037 & 1.348 & 1.584 & 1.371 & 2.868 & 89.5 & 107.1 & 118.2 & 0.0 \\ \hline 2_{e,\mathrm{CI}} & 2.029 & 1.764 & 1.582 & 1.373 & 2.899 & 91.2 & 105.6 & 118.8 & 0.0 \\ \hline 2_{e,\mathrm{CI}} & 2.015 & 2.158 & 1.576 & 1.377 & 2.882 & 91.3 & 105.8 & 118.5 & 0.0 \\ \hline 3_{e,\mathrm{F}} & 2.135 & 1.340 & 1.541 & 1.400 & 2.489 & 71.3 & 95.4 & 110.7 & 66.8 \\ 3_{e,\mathrm{B}} & 2.122 & 1.765 & 1.529 & 1.407 & 2.451 & 70.3 & 92.7 & 110.0 & 71.5 \\ \hline 3_{e,\mathrm{B}} & 2.122 & 1.571 & 1.523 & 1.410 & 2.363 & 68.0 & 94.4 & 108.2 & 71.2 \\ \hline 3_{e,\mathrm{F}} & 2.093 & 1.335 & 1.584 & 1.373 & 2.918 & 88.4 & 106.6 & 119.2 & 0.0 \\ \hline 3_{e,\mathrm{CI}} & 2.088 & 1.761 & 1.581 & 1.373 & 2.948 & 90.0 & 105.1 & 119.9 & 0.0 \\ \hline 3_{e,\mathrm{CI}} & 2.038 & 1.765 & 1.527 & 1.406 & 2.565 & 66.3 & 94.7 & 112.6 & 67.8 \\ \hline 4_{e,\mathrm{B}} & 2.343 & 1.960 & 1.524 & 1.409 & 2.581 & 66.8 & 94.7 & 112.6 & 67.8 \\ \hline 4_{e,\mathrm{B}} & 2.343 & 1.696 & 1.524 & 1.409 & 2.581 & 66.8 & 94.7 & 112.6 & 67.8 \\ \hline 4_{e,\mathrm{B}} & 2.304 & 1.765 & 1.587 & 1$	Compound 1	KI	K2	1.579	K4	D-D 0 262	AI	A2	A3	*DI
	⊥ _{s-F} 1	1.512	1.331	1.578	1.391	2.303	102.8	94.1	107.9	58.5
	∎ _{s-Cl}	1.503	1.757	1.577	1.390	2.343	102.4	93.1	108.0	61.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∎ _{s-Br}	1.500	1.929	1.575	1.391	2.348	102.5	93.5	107.5	60.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{s-I}	1.495	2.144	1.571	1.390	2.286	99.7	94.5	106.6	61.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L _{t-F}	1.547	1.336	1.587	1.378	2.510	108.4	104.9	110.9	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L _{t-Cl}	1.542	1.761	1.585	1.380	2.521	109.7	104.1	111.1	0.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L _{t-Br}	1.538	1.935	1.582	1.382	2.513	109.5	104.3	110.9	0.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1_{t-I}	1.532	2.150	1.579	1.383	2.500	109.4	104.6	110.7	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•					2 4 4 9				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 _{s-F}	2.051	1.342	1.545	1.399	2.449	73.3	95.4	109.9	66.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_{s-Cl}	2.041	1.766	1.533	1.406	2.395	71.9	92.7	108.8	72.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_{s-Br}	2.037	1.940	1.530	1.407	2.387	71.1	93.5	108.7	71.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 _{s-I}	2.027	2.158	1.526	1.409	2.313	69.6	94.7	107.2	71.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_{t-F}	2.037	1.338	1.584	1.371	2.868	89.5	107.1	118.2	0.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2_{t-Cl}	2.029	1.764	1.582	1.373	2.899	91.2	105.6	118.8	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2_{ ext{t-Br}}$	1.996	1.924	1.569	1.356	2.876	92.2	104.9	119.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2_{t-I}	2.015	2.158	1.576	1.377	2.882	91.3	105.8	118.5	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3_{s-F}	2.135	1.340	1.541	1.400	2.489	71.3	95.4	110.7	66.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3_{\text{s-Cl}}$	2.128	1.765	1.529	1.407	2.451	70.3	92.7	110.0	71.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 _{s-Br}	2.122	1.959	1.526	1.406	2.451	70.5	93.0	110.0	71.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 _{s-I}	2.112	2.157	1.523	1.410	2.363	68.0	94.4	108.2	71.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3_{t-F}	2.093	1.335	1.584	1.37	2.918	88.4	106.6	119.2	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3_{\text{t-Cl}}$	2.088	1.761	1.581	1.373	2.952	90.0	105.0	120.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3_{\text{t-Br}}$	2.085	1.933	1.578	1.375	2.948	90.0	105.1	119.9	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 _{t-I}	2.075	2.152	1.574	1.376	2.934	90.0	105.4	119.7	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 _{s-F}	2.356	1.341	1.543	1.395	2.624	67.7	98.5	113.5	61.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4_{\text{s-Cl}}$	2.345	1.765	1.527	1.406	2.565	66.3	94.7	112.3	68.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 _{s-Br}	2.343	1.960	1.524	1.409	2.581	66.8	94.7	112.6	67.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 _{s-I}	2.332	2.205	1.518	1.412	2.452	63.3	96.3	110.0	68.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4_{t-F}	2.313	1.335	1.585	1.370	3.041	82.2	107.1	121.5	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4_{\text{t-Cl}}$	2.308	1.760	1.580	1.373	3.077	83.6	105.6	122.5	0.0
$4_{\text{t-I}}$ 2.2942.1981.5731.3783.04983.3106.3121.90.0 $5_{\text{s-F}}$ 2.4911.3421.5421.3932.64364.1100.1113.959.8 $5_{\text{s-Cl}}$ 2.4771.7691.5271.4022.58662.997.6113.366.2	$4_{\text{t-Br}}$	2.306	1.957	1.578	1.376	3.079	83.7	105.5	122.6	0.0
5 _{s-F} 2.491 1.342 1.542 1.393 2.643 64.1 100.1 113.9 59.8 5 _{s-Cl} 2.477 1.769 1.527 1.402 2.586 62.9 97.6 113.3 66.2	4 _{t-I}	2.294	2.198	1.573	1.378	3.049	83.3	106.3	121.9	0.0
5_{s-F} 2.4911.3421.5421.3932.64364.1100.1113.959.8 5_{s-C1} 2.4771.7691.5271.4022.58662.997.6113.366.2										
$5_{\text{s-Cl}}$ 2.477 1.769 1.527 1.402 2.586 62.9 97.6 113.3 66.2	5 _{s-F}	2.491	1.342	1.542	1.393	2.643	64.1	100.1	113.9	59.8
	5 _{s-Cl}	2.477	1.769	1.527	1.402	2.586	62.9	97.6	113.3	66.2

5 _{s-Br}	2.473	1.945	1.525	1.404	2.585	63.0	97.6	112.8	64.9
5 _{s-I}	2.461	2.211	1.518	1.408	2.482	60.6	98.7	110.7	65.8
5_{t-F}	2.394	1.335	1.583	1.370	3.101	80.7	106.5	123.1	0.0
$5_{\text{t-Cl}}$	2.456	1.774	1.494	1.453	3.283	83.9	100.3	127.8	0.0
$5_{\text{t-Br}}$	2.449	1.948	1.493	1.454	3.279	84.1	100.3	127.7	0.0
5 _{t-I}	2.443	2.167	1.492	1.454	3.260	83.7	100.9	127.3	0.0

	Ё—С _{DB}	Ë—∥ª	В—В	C=C	Ë-B	B-C _{DB}	X-B
$1_{\mathbf{F}}$	0.249	0.498	0.105	1.674	1.191	0.911	0.871
1 _{Cl}	0.248	0.496	0.114	1.672	1.225	0.933	1.147
1_{Br}	0.247	0.494	0.113	1.671	1.237	0.935	1.146
$1_{\mathbf{I}}$	0.236	0.472	0.123	1.670	1.241	0.940	1.170
$2_{\rm F}$	0.197	0.394	0.235	1.605	0.963	1.024	0.845
2 _{Cl}	0.200	0.400	0.278	1.558	0.933	1.068	1.151
2_{Br}	0.195	0.390	0.285	1.550	0.940	1.070	1.157
2_{I}	0.188	0.376	0.322	1.536	0.933	1.074	1.196
3 _F	0.154	0.308	0.225	1.643	0.931	1.026	0.835
3 _{Cl}	0.149	0.298	0.269	1.597	0.901	1.072	1.144
3_{Br}	0.147	0.294	0.279	1.583	0.903	1.073	1.151
3 ₁	0.142	0.284	0.323	1.564	0.892	1.078	1.190
$4_{\rm F}$	0.123	0.246	0.214	1.669	0.890	1.028	0.822
4 _{Cl}	0.127	0.254	0.269	1.600	0.840	1.084	1.139
4_{Br}	0.125	0.250	0.279	1.584	0.836	1.085	1.148
4_{I}	0.125	0.250	0.343	1.553	0.811	1.095	1.192
$5_{\mathbf{F}}$							
5 _{Cl}	0.091	0.182	0.281	1.644	0.812	1.074	1.126
5_{Br}	0.089	0.178	0.294	1.627	0.802	1.073	1.134
5 ₁	0.090	0.180	0.362	1.590	0.774	1.083	1.177

Table 7 "Wiberg bond indices" (WBI) for the singlet BHEs $(\mathbf{1}_{s-X}, \mathbf{2}_{s-X}, \mathbf{3}_{s-X}, \mathbf{4}_{s-X} \text{ and } \mathbf{5}_{s-X} \text{ with } X = H, F, Cl, Br and I)$ at B3LYP/TZ2P.

^a || is a symbol for C=C bond. The values of the \ddot{E} -|| column are the products of the first column multiplied by 2 (WBI_(\ddot{E} -||) = WBI_{(\ddot{E} -CDB} × 2)

	$LP(X) \rightarrow LP^*(B)$ $[n \rightarrow p_{(B)}]$	$BD(C=C) \rightarrow LP^*(B)$ $[\pi \rightarrow p_{(B)}]$	BD(C=C)→LP*(Ë) [π→p _(Ë)]	$BD(B-C_{DB}^{1}) \rightarrow LP^{*}(\ddot{E})$ $[\sigma \rightarrow p_{(\ddot{E})}]$	$BD(B-E) \rightarrow LP^*(B_{opp}^{2})$ $[\sigma \rightarrow p_{(B)}]$
$1_{\rm F}$	36.68	7.65	23.00	18.27	94.41
1 _{Cl}	34.10	8.60	23.08	17.64	100.25
$1_{\mathbf{Br}}$	29.63	8.94	21.87	17.1	101.81
$2_{\rm F}$	40.21	12.58	13.62	4.68	15.63
2 _{Cl}	39.16	14.47	15.27	4.36	17.58
2_{Br}	34.73	15.07	14.11	3.99	18.27
$3_{\rm F}$	40.21	13.49	10.90	3.41	13.95
3 _{Cl}	39.27	15.41	11.74	3.02	15.70
3 _{Br}	35.18	15.94	11.65	2.78	16.26

Table 8 Calculated donor-acceptor energies for the most important interactions (the conventional statement for each donor and acceptor orbital is written in brackets) at UB3LYP/6-311++g**.

 $^{1}C_{DB}=C_{Double Bond}$ $^{2}B_{opp}=B_{opposite}$

DS	E _{HOMO-1} kcal/mol	%SFO contribution in HOMO-1 of Ë	Е _{номо} kcal/mol	%SFO contribution in HOMO of Ë	E _{LUMO} kcal/mol	%SFO contribution in LUMO of Ë
1_{H}			-166.976	$44.75\% p_x + 13.70\% s$	-60.905	72.18%pz
$2_{\rm H}$			-155.832	$38.86\% p_x + 20.72\% s$	-49.282	83.67%pz
3 _H			-153.473	$41.44\% p_x + 13.99\% s$	-51.614	89.96%pz
$4_{\mathbf{H}}$			-143.942	$20.37\% p_x + 17.31\% s + 14.87\% p_z$	-56.673	$54.78\% p_x + 38.13\% p_z$
$5_{\mathbf{H}}$	-138.131	$30.85\% p_x + 15.43\% s$	-137.695	33.01%py	-66.429	$77.12\% p_x + 15.66\% p_z$
$1_{\mathbf{F}}$			-171.090	$51.59\% p_x + 13.26\% s$	-79.439	72.18%pz
1 _{Cl}			-171.279	$17.89\% p_x + 12.63\% s$	-75.407	71.42%pz
1_{Br}			-171.012	$44.28\% p_x + 11.35\% s$	-77.060	70.11%pz
1_{I}			-169.616	$28.53\% p_x + 6.34\% s$	-79.176	69.13%pz
$2_{\rm F}$			-158.028	$40.98\% p_x + 19.70\% s$	-63.752	$80.94\% p_z$
2 _{Cl}			-158.285	$35.78\% p_x + 17.67\% s$	-58.433	81.74%pz
2_{Br}	-158.877	$32.95\% p_x + 15.44\% s$	-158.414	22.21%py	-60.878	79.32%pz
2_{I}	-158.441	$21.74\% p_x + 9.55\% s$	-154.281	15.52%py	-63.548	76.34%pz
$3_{\mathbf{F}}$			-157.152	$42.34\% p_x + 13.95\% s$	-64.854	$80.85\% p_z$
3 _{Cl}	-156.228	$36.83\% p_x + 12.06\% s$	-154.827	31.07% p _y	-60.316	81.09%pz
3_{Br}	-157.163	$33.28\% p_x + 10.43\% s$	-155.277	$26.66\%p_y$	-62.156	80.16%pz
$3_{\mathbf{I}}$	-156.530	$22.74\% p_x + 6.98\% s$	-151.675	$19.95\%p_y$	-64.789	78.60%pz
$4_{\mathbf{F}}$			-146.184	$32.66\% p_x + 19.33\% s$	-69.991	$69.63\% p_z + 18.71\% p_x$
4 _{Cl}	-146.685	$31.76\% p_x + 16.51\% s$	-146.265	$28.10\%p_y$	-65.513	$79.35\% p_z + 10.78\% p_x$
$4_{\mathbf{Br}}$	-147.888	$24.06\% p_x + 15.02\% s$	-147.465	$24.90\%p_y$	-67.247	$58.88\% p_z + 30.50\% p_x$
$4_{\rm I}$	-150.457	$16.91\% p_x + 10.74\% s$	-145.889	$19.47\%p_y$	-70.584	$59.63\% p_z + 30.80\% p_x$
$5_{\mathbf{F}}$	-144.031	$32.94\% p_x + 17.40\% s$	-142.490	$36.06\% p_y$	-71.894	$71.71\% p_z + 18.98\% p_x$
5 _{Cl}	-144.185	$29.32\% p_x + 14.58\% s$	-141.474	$29.84\%p_y$	-69.481	$70.65\% p_z + 21.06\% p_x$
5_{Br}	-145.261	$27.82\% p_x + 13.35\% s$	-142.472	$27.39\% p_y$	-71.103	$70.75\% p_z + 20.39\% p_x$
51	-148.106	$19.74\% p_x + 9.97\% s$	-142.520	21.73% p _y	-74.605	$68.62\% p_z + 22.90\% p_x$

Table 9 Calculated contribution percentage for the estimation of σ and *p* atomic orbitals in the HOMO (and HOMO-1 anywhere needed) and LUMO of singlet BHEs ($\mathbf{1}_{s-X}$, $\mathbf{2}_{s-X}$, $\mathbf{3}_{s-X}$, $\mathbf{4}_{s-X}$ and $\mathbf{5}_{s-X}$ with X = H, F, Cl, Br and I) respectively, at UB3LYP/TZ2P.

	Ë Hybrid orbital in σ _{B-Ë} bonds	Average hybrid for \ddot{E} in $\sigma_{B-\ddot{E}}$ bonds	Ë Hybrid in LP orbitals	Average hybrid for Ë in LP orbitals
$1_{\mathbf{F}}$	$\mathrm{sp}^{0.94}$			
1 _{Cl}	sp	sp ^{0.99}		
1_{Br}	sp	-1		
1 _I	sp			
$2_{\rm F}$	sp ^{8.42}		sp ^{0.27}	
2 _{Cl}	sp ^{7.3}	sp ^{7.27}	sp ^{0.32}	sp ^{0.32}
2_{Br}	${\rm sp}^{6.88}$	ър	sp ^{0.34}	ър
2_{I}	sp ^{6.47}		sp ^{0.36}	
$3_{\mathbf{F}}$	sp ^{12.12}		sp ^{0.18}	
3 _{Cl}	$sp^{10.5}$	sp ^{10.42}	sp ^{0.21}	sp ^{0.21}
3 _{Br}	sp ^{9.8}	sp	sp ^{0.22}	sp
3 I	sp ^{9.25}		sp ^{0.23}	
$4_{\mathbf{F}}$	sp ^{12.69}		sp ^{0.17}	
4 _{Cl}	$sp^{11.06}$	sp ^{10.99}	sp ^{0.19}	sp ^{0.19}
4_{Br}	sp ^{10.43}	sp	sp ^{0.20}	sp
4_{I}	sp ^{9.79}		sp ^{0.21}	
5 _F				
5 _{Cl}	sp ^{12.94}	sp ^{12.16}	sp ^{0.16}	sp ^{0.16}
5 _{Br}	sp ^{12.16}	પ	sp ^{0.17}	sh
5 1	sp ^{11.30}		sp ^{0.18}	

Table 10 Contribution (%) of s and p atomic orbital in the hybrid orbital of divalent atom (E) in its Ë-B bonding and in lone pair (LP) orbitals.

Compound	Global Elec	etrophilicity	Nucleophilicity index (<i>N</i>) HOMO(TCNE)=-9.42 eV			
	ω (6	. v)				
	BHEs	NHEs	BHEs	NHEs		
$1_{\text{s-F}}$	3.09	1.35	2.16	1.82		
$1_{\text{s-Cl}}$	3.03	2.27	2.11	2.44		
$1_{\mathbf{s}\text{-Br}}$	3.11	3.06	2.11	2.64		
$1_{\text{s-I}}$	3.14	3.52	2.24	3.04		
$2_{\mathrm{s-F}}$	2.52	1.70	2.67	3.17		
$2_{\text{s-Cl}}$	2.44	2.00	2.60	3.32		
2_{s-Br}	2.53	2.77	2.59	3.41		
2_{s-I}	2.86	3.30	2.69	3.58		
$3_{\mathrm{s-F}}$	2.66	1.88	2.74	3.53		
$3_{\text{s-Cl}}$	2.63	1.90	2.71	3.64		
3 _{s-Br}	2.60	2.51	2.79	3.81		
3 _{s-I}	2.73	3.13	2.90	3.94		
$4_{\mathrm{s-F}}$	2.85	2.09	3.13	3.99		
$4_{\text{s-Cl}}$	2.89	2.11	3.01	4.03		
4_{s-Br}	2.84	2.40	3.09	4.10		
$4_{\text{s-I}}$	2.80	3.05	3.22	4.29		
5 _{s-F}	2.65	2.06	3.44	4.31		
5 _{s-Cl}	2.74	2.10	3.29	4.32		
5 _{s-Br}	2.71	2.28	3.34	4.38		
5 _{s-I}	1.09	2.95	1.20	4.55		

Table 11 Calculated global electrophilicity (ω) and Nucleophilicity indices (N)^a for the singlet state of all BHEs under study compared to their analogues *N*HËs.

^a The global Electrophilicity ($\omega = \mu^2/2\eta$; $\mu \approx (E_{HOMO} + E_{LUMO})/2$ & $\eta = E_{LUMO} - E_{HOMO}$) and Nucleophilicity index ($N = E_{HOMO(Nu)} - E_{HOMO(TCNE)}$; Tetracyanoethylene (TCNE) is chosen as the reference) [1] for all of the halogenated species are probed. μ is the chemical potential and η is the chemical hardness.

Table 12 Selected bond lengths in Å, bond angles and dihedral angles (**D1**) in Degree (°), wiberg bond indices (WBI), donor-acceptor energies, and formation energies in kcal/mol for the adducts (complexes) of 1_X -, 2_X - and 3_X -MCl (with X =F, Cl; M=Cu, Ag, Au) at UB3LYP/TZ2P.

		WBI						Donor-acceptor energies		
	M-Ë	B-Ë	M-Ë	B-Ë	Ë—I	D1	∠Ë-M-Cl	$\Delta E_{\text{Complex}}$	$\pi(\text{C=C}){\rightarrow}p(\ddot{\text{E}})$	LP(M)→LP*(Ë)
1 _F		1.53		1.107	0.498	51.7			18.09	
1 _F -CuCl	1.85	1.57	0.406	0.973	0.106	46.5	177.42	-49.89	7.18	20.33
1 _F -AgCl	2.17	1.55	0.283	0.999	0.106	51.1	179.21	-32.50	5.64	9.89
1_{F} -AuCl	1.94	1.58	0.745	0.930	0.093	40.5	171.29	-66.01	18.98	53.62
2_{F}		2.04		0.959	0.394	55.7			8.60	
2 _F -CuCl	2.27	2.03	0.552	0.959	0.106	44.7	178.58	-35.45	7.07	7.09
$2_{\rm F}$ -AgCl	2.51	2.03	0.474	0.962	0.093	46.7	177.30	-26.29	29.14	5.82
2_{F} -AuCl	2.32	2.03	0.814	0.946	0.108	39.9	179.69	-55.41	8.54	18.35
3_{F}		2.14		0.942	0.308	56.3			6.63	
3_{F} -CuCl	2.34	2.11	0.520	0.943	0.093	44.0	178.69	-31.37	30.07	5.78
3_{F} -AgCl	2.57	2.12	0.447	0.945	0.108	45.8	177.74	-23.40	10.28	4.96
3_{F} -AuCl	2.39	2.11	0.756	0.929	0.125	39.1	179.37	-49.38	8.28	14.57
1_{Cl}		1.52		1.141	0.496	52.9			12.56	
1_{Cl} -CuCl	1.86	1.56	0.366	1.001	0.108	49.0	177.83	-49.01	5.90	18.56
1 _{Cl} -AgCl	2.18	1.55	0.256	1.028	0.125	52.8	179.16	-32.06	4.51	9.3
1_{Cl} -AuCl	1.95	1.57	0.696	0.957	0.108	43.9	172.58	-64.43	13.56	49.45
2 _{Cl}		2.04		0.913	0.400	58.4			7.11	
2_{Cl} -CuCl	2.27	2.02	0.536	0.936	0.125	48.5	178.67	-34.63	5.85	6.84
2 _{Cl} -AgCl	2.51	2.02	0.459	0.938	0.108	50.3	177.48	-25.66	29.77	5.67
2_{Cl} -AuCl	2.33	2.02	0.797	0.924	0.157	44.1	179.84	-54.27	12.21	17.58
3_{Cl}		2.13		0.893	0.298	59.4			11.43	
3_{Cl} -CuCl	2.34	2.10	0.508	0.914	0.108	48.4	178.75	-30.43	30.27	5.53
3_{Cl} -AgCl	2.58	2.11	0.435	0.915	0.157	50.0	177.76	-22.40	13.51	4.81
3_{Cl} -AuCl	2.40	2.10	0.745	0.903	0.147	43.9	179.46	-48.19	13.66	14

Fig. 1 Energies of bis(boryl)-based divalents as a function of their dihedral angle D1(\angle C-B-E-B) for puckered singlets (**3**_{s-X}, with the minimum at ~60°), at UB3LYP/TZ2P.

Fig. 2 $\Delta E_{(t-s)}$ vs. atomic volume for halogenated BHEs at B3LYP/6-311++g**.

Fig. 3 Linear relationships between singlet LUMO–HOMO energy gaps $\Delta E_{(LUMO-HOMO)}$, and their corresponding singlet–triplet energy separations (ΔE_{st}), for the two series of halogenated five-membered-rings: **3**_{s-X} and **5**_{s-X}; with correlation factors: 0.918 and 0.924, respectively

Fig. 4 Linear relationships between the B-E-B angles and their corresponding halogen atom radius, for the five-membered-rings: 2_{s-X} (a), 3_{s-X} (b), 4_{s-X} (c), 5_{s-X} (d); with correlation factors: 0.844, 0.703, 0.970 and 0.990, respectively

Fig. 5 Graphs showing relative energies for the interaction of Lewis base (PH₃) to (a) $\mathbf{2}_{s-Cl}$ and (b) $\mathbf{2}_{t-Cl}$.

Fig. 6 Correlation diagrams showing high correlation between the relative energies of the reactions (Scheme 4, Table 8S) and ΔE_{st}

[1] Kassaee MZ, Momeni MR, Shakib FA, Najafi Z, Zandi H (2011) J Phys Org Chem 24:1022