Supporting information

A novel pyrazoline-based fluorescent probe for detecting fluoride ion

in water and its application on real sample

Ying Liu,^a Sheng-Qing Wang,^{ab} Bao-Xiang Zhao*^a

a Institute of Organic Chemistry, School of Chemistry and Chemical Engineering,

Shandong University, Jinan 250100, P.R. China

b Linyi Engineering Consulting Institute, Shandong Province, Linyi 276000, P.R.

China

*Corresponding author. Tel.: +86 531 88366425; fax: +86 531 88564464. E-mail address: bxzhao@sdu.edu.cn (B.X. Zhao). Fig. S1 The HRMS data of the reaction products of probe 1 and F⁻

Fig. S2 Absorbance spectra of probe $1 + F^-$ in HEPES (pH = 7.4) solution (CH₃CN/water = 8:2, v/v) in the presence of increasing F⁻ concentrations (0, 2, 4, 6, 8, 10, 20, 30, 50, 70, 90 μ M). The probe concentration is 1.0×10^{-5} M.

Fig. S3 The emission spectra in HEPES solution (CH₃CN/water = 8:2, v/v, pH = 7.4). 1: probe 1; 2: the products of probe 1 upon addition of 0.4 mM F⁻; 3: compound 2. $(\lambda_{ex} = 340 \text{ nm})$. Both concentrations of probe 1 and compound 2 are 1.0×10^{-6} M.

Fig. S4 Time course of the fluorescence response of probe 1 in HEPES (pH = 7.4) solution (CH₃CN/water = 8:2, v/v) upon addition of 0.4 mM F⁻. The probe concentration is 1.0×10^{-6} M.

¹H-NMR

¹³C-NMR

IR

HRMS