# A bluish – green emitting organic compound Methyl 3–[(E)–(2– hydroxy–1-naphthyl)methylidene]carbazate: Spectroscopic, thermal, fluorescence, antimicrobial and molecular docking studies

### G. Gomathi<sup>*a*</sup>, K.Srinivasan<sup>b</sup>, D. Velmurugan<sup>b</sup> and R. Gopalakrishnan<sup>\**a*</sup>

### Single crystal and Powder X – ray diffraction studies

Single crystal X – ray diffraction results confirm that MNMC crystallizes in orthorhombic crystal system with cell parameters a = 5.204 (8) Å, b = 9.727 (14) Å, c = 23.67 (4) Å,  $\alpha = \beta = \gamma = 90^{\circ}$ , V = 1142 (4) Å<sup>3</sup>, with non centrosymmetric space group  $P2_12_12_1$ . The values of the cell parameters obtained in the present investigation agree well with the already reported values.<sup>10</sup> Table 1 shows the results of the present investigation with the reported literature data.

| Crystal Parameters                   | Present Values     | Reported Values <sup>10</sup> |
|--------------------------------------|--------------------|-------------------------------|
| Crystal system,                      | Orthorhombic,      | Orthorhombic,                 |
| Space group                          | $P2_{1}2_{1}2_{1}$ | $P2_{1}2_{1}2_{1}$            |
| a (Å)                                | 5.204 (8)          | 5.1754 (3)                    |
| b (Å)                                | 9.727 (14)         | 9.2787(5)                     |
| c (Å)                                | 23.67 (4)          | 23.6766 (12)                  |
| $\alpha = \beta = \gamma (^{\circ})$ | 90 90              |                               |
| V (Å <sup>3</sup> )                  | 1142 (4)           | 1136.97 (11)                  |

Table S1. Cell parameters of MNMC single crystal

Powder X-ray diffraction measurement was carried out for the MNMC compound and the powder X-ray diffraction pattern (Fig. S1a) drawn by using Powder X software. Mercury software was used to get the powder X-ray diffraction pattern of the reported compound (Fig. S1b). (hkl) planes and cell parameters obtained for the title compound were compared with the alredy reported values.



Fig. S1a. Powder X-ray pattern of MNMC compound (Powder X software)



Fig.S1b. Powder X-ray diffraction pattern of MNMC compound (Mercury software)

# Table S2. FT - IR and FT - RAMAN spectral assignments

| IR                      | RAMAN         | ASSIGNMENTS                                                      |
|-------------------------|---------------|------------------------------------------------------------------|
| 3749                    |               | O – H stretching                                                 |
| 3362, 3246              |               | N – H stretching                                                 |
|                         | 3077          | Aromatic C-H symmetric stretching                                |
| 3068, 3168              |               | Aromatic C – H stretching                                        |
|                         | 2962          | Symmetric and asymmetric stretching of C-H out of                |
| 2960                    |               | CH <sub>3</sub> symmetric and asymmetric stretching              |
| 1701                    |               | C = O stretching                                                 |
| 1669                    |               | C = N Stretching                                                 |
|                         | 1669, 1623    | O = C - N stretching, $C = O$ stretching                         |
| 1622, 1596              |               | Ring quadrant stretching                                         |
|                         | 1604, 1576    | C = N stretching                                                 |
|                         | 1532          | Asymmetric C N stratching                                        |
| 1528                    | 1332          | C = C  stretching                                                |
| 1528                    |               | CH <sub>2</sub> asymmetric stratching NH <sub>2</sub> scissoring |
| 1505                    |               | CI13 asymmetric stretching, 1412 seissoring                      |
|                         | 1470          | CH <sub>3</sub> asymmetric deformation                           |
| 1449                    |               | CH <sub>3</sub> in phase bending                                 |
| 1420                    | 1420          | C-OH bending, C – H deformation                                  |
|                         | 1398          | CH <sub>3</sub> asymmetric deformation                           |
|                         | 1379          | CH <sub>3</sub> asymmetric deformation, C - H symmetric          |
| 1358, 1236              |               | C-OH stretching vibration of phenol                              |
|                         | 1239, 1195    | Ar – O – H stretching                                            |
| 1188, 1147, 1092        |               | Aromatic C-H in plane bending                                    |
| 1060                    |               | C-O-C out of phase vibration                                     |
|                         | 1037          | C – H in plane bending                                           |
| 950                     |               | C-H wagging                                                      |
| 896, 859, 819, 767, 737 |               | Aromatic C-H out of bending                                      |
| 715                     |               | N – H wagging                                                    |
| 672                     |               | N-H out of plane bending                                         |
| 577                     |               | O = C - N bending                                                |
|                         | 169, 100, 81, | Lattice vibrations of crystal                                    |

### Thermal analysis

The TG-DTA-DSC analysis was performed to study the thermal stability of MNMC compound. It can be observed from TG, two stages of weight loss which is also very clear from the DTA with two sharp inflections. First stage of weight loss occurs between 200 to 259 °C with mass change of 26.62%.

The sharp melting of the MNMC compound was found at 205° C. There was no visible weight loss before the melting and hence it proves the absence of water molecules in the crystal lattice. Second stage of weight loss obtained between 266 to 450° C where the mass change is of 60.48%. The mass of final residue 12.27% was left out at a temperature above 450° C (Fig. S2a).



Figure S2a. TG - DTA analysis of MNMC compound

The DSC trace plot has been represented with an downward arrow for exothermic process. From the DSC trace (Fig. S2b), it is observed that there is a sharp endothermic peak at 205° C, which is the melting point of the material. The sharp peak represents the high purity of the compound. The exothermic peak at 268° C and another endothermic peak at 368° C indicate two stages of decomposition of the compound. The MNMC compound can be utilized well below 205° C in optical application.



Figure S2b. DSC trace of MNMC compound

## Second harmonic generation efficiency

The Kurtz – Perry powder technique20 was employed to screen the second harmonic generation efficiency of the material. The output voltage obtained for MNMC, KDP and Urea are 36, 34.7, 45.3 mV, respectively. The second harmonic generation efficiency of MNMC is found to be 1.04 and 0.8 times as that of KDP and Urea, respectively.