Synthesis and evaluation of new benzimidazole-based COX inhibitors: a naproxen-like interaction detected by STD-NMR

Supporting Information

Table of Contents

- 1. Procedure for the synthesis of (E)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid
- 2. ¹H and ¹³C NMR spectra of the described products
- 3. STD NMR spectra of compounds 5a and 6a-e
- 3. Molecular Docking best docked conformers

1. Synthesis of (E)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid

The synthesis of (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid **3***E* was carried according to the procedure described by Terao and coworkers.¹ Thus, the first attempt to prepare (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid **3***E* was based on this procedure that considers the condensation of phenyl(pyridin-3-yl)methanone **1** with phosphonium bromide **2** in the presence of sodium hydride in dimethyl sulfoxide, although no product was obtained. Changing the solvent to THF, increasing the amount of sodium hydride, phosphonium bromide **2** or temperature did not improve the reaction and no product was isolated. When potassium *tert*-butoxide (4 equiv) was used as base in dry THF to generate *in situ* the (5-carboxypentyl)triphenylphosphorane from (5-carboxypentyl)triphenylphosphonium bromide **2** an isomeric mixture of (*Z*)- and (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acids **3***Z*/*E* was obtained in 28% yield, (*Z*/*E*-isomeric ratio: 66/34). The use of lithium bases such as *n*-butyllithium (2.5 equiv, 1.6 M in hexane) or lithium *tert*-butoxide (2.86 equiv, 1.0 M in THF) slightly improved (*E*)-selectivity. Although in both cases the (*Z*)-product was the major compound and the diastereomeric mixture **3***Z*/*E* was obtained in low yields (22% and 18%, respectively).

In an effort to improve the (*E*)-selectivity and the reaction yield we attempted the Schlosser modification² of the Wittig reaction. Performing the Schlosser-Wittig reaction of (5-carboxypentyl)triphenylphosphonium bromide **2** with phenyl(pyridin-3-yl)methanone **1** in the presence of phenyllithium (2.24 equiv plus 1.12 equiv, 2.0 M in Bu₂O) and lithium chloride (2.24 equiv) in dry THF a (50/50) diastereomeric mixture of (*Z*)- and (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acids **3Z**/*E* was obtained in 26% yield. Since the isomers could not be isolated in a pure acid form, the obtained isomeric mixture **3Z**/*E* was esterified to the corresponding methyl esters with methanol in the presence of sulfuric acid at 60 °C to simplify the separation. The methyl ester **4E** was purified by thin layer chromatography (dichloromethane:acetone, 8:2). Hydrolysis of methyl (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid **3E** in good yield (72%). The ¹H NMR spectra of (*E*)-7-phenyl-7-(pyridin-3-yl)hept-6-enoic acid **3***E* was in agreement with the literature.¹

Scheme 1: Reaction Conditions:

A: 1) 1.09 mmol of **1**, 1 equiv of **2**, 2.24 equiv + 1.12 equiv PhLi (2.0 M in Bu₂O), LiCl (2.24 equiv), THF, -78 °C \rightarrow rt; 2) HCl (1.12 equiv), Et₂O, -78 °C; 3) 'BuOK (1.2 equiv), rt, **3Z**/*E* (26%); B: 0.19 mmol of **3Z**/*E*, H₂SO₄ (0.05 mL), MeOH (1 mL), 60 °C, 3h. Isolated by pTLC **4***E* (39%); C: 0.57 mmol of **3***E*, 10 equiv NaOH (aq., 1 M), EtOH (1.5 mL), rt, 3 h. **3***E* (72%).

¹ K. Kato, S. Ohkawa, S. Terao, Z.-I. Terashita, K. Nishikawa, J. Med. Chem. 1985, 28, 287–294

² Q. Wang, D. Deredas, C. Huynh, M. Schlosser, *Chem. Eur. J.* **2003**, *9*, 570–574

2. ¹H and ¹³C NMR spectra of the described products

Compound 2. ¹H NMR (400 MHz, acetone-d₆)

Compound 2. ¹³C NMR (100 MHz, acetone-d₆)

Compound 3. ¹H NMR (400 MHz, acetone-d₆)

Compound 3. ¹³C NMR (100 MHz, acetone-d₆)

Compound 4a. ¹H NMR (400 MHz, acetone-d₆)

Compound 4a. ¹³C NMR (100 MHz, acetone-d₆)

Compound 4b ¹H NMR (400 MHz, acetone-d₆)

Compound 4b ¹³C NMR (100 MHz, acetone-d₆)

Compound 4c ¹H NMR (400 MHz, acetone-d₆)

Compound 4c ¹³C NMR (100 MHz, acetone-d₆)

Compound 4d. ¹H NMR (400 MHz, acetone-d₆)

Compound 4d. ¹³C NMR (100 MHz, acetone -d₆)

Compound 4e. ¹H NMR (400 MHz, acetone-d₆)

Compound 4e. ¹³C NMR (100 MHz, acetone-d₆)

Compound 5a. ¹H NMR (400 MHz, acetone-d₆)

Compound 5a. ¹³C NMR (100 MHz, acetone-d₆)

Compound 5b. ¹³C NMR (100 MHz, acetone-d₆)

Compound 5c. ¹H NMR (400 MHz, acetone-d₆)

Compound 5c. ¹³C NMR (100 MHz, acetone-d₆)

Compound 5d. ¹³C NMR (100 MHz, acetone-d₆)

Compound 5e. ¹H NMR (100 MHz, acetone-d₆)

Compound 6a. ¹H NMR (400 MHz, acetone-d₆)

Compound 6a. ¹³C NMR (100 MHz, acetone-d₆)

Compound 6a. ¹H NMR (600 MHz, D₂O)

Compound 6b ¹³C NMR (100 MHz, acetone-d₆)

Compound 6b. ¹H NMR (600 MHz, D₂O)

Compound 6c. ¹³C NMR (100 MHz, acetone-d₆)

Compound 6c. ¹H NMR (600 MHz, D₂O)

Compound 6d. ¹³C NMR (100 MHz, acetone-d₆)

Compound 6d. ¹H NMR (600 MHz, D₂O)

Compound 6e. ¹³C NMR (400 MHz, acetone-d₆)

Compound 6e. ¹H NMR (600 MHz, D₂O)

3. STD NMR spectra of compounds 5a and 6a-e

Compound 5a. STD NMR (600 MHz, D₂O), performed with hCOX-2 (1.15 mM)

Compound 6a. STD NMR (600 MHz, D₂O), performed with oCOX-2 (3 mM)

Compound 6b. STD NMR (600 MHz, D₂O), performed with oCOX-2 (3 mM)

Compound 6c. STD NMR (600 MHz, D₂O), performed with oCOX-2 (3 mM)

Compound 6d. STD NMR (600 MHz, D₂O), performed with oCOX-2 (3 mM)

Compound 6e. STD NMR (600 MHz, D₂O), performed with oCOX-2 (3 mM)

Compound	COX-1 2AYL	COX-2 3PGH
	-11.50	-12.27
5b	-11.86	-12.55
5c	-11.33	-11.96
5d	-12.13	-12.48
5e	-12.29	-12.48
ба	-11.73	-12.65
6b	-11.92	-12.68
6c	-11.52	-12.50
6d	-12.29	-12.87
6e	-11.75	-12.87
Celecoxib	-8.07	-10.41
Indomethacin	-9.33	-10.73
parent-comp*	-10.72	-10.76

Best docked conformers, energies in kcal/mol.

*parent compound has a hydrogen on C4 of the the benzimidazole.