Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermalroute

Xu Liu,^a Nan Chen,^a Xinxin Xing,^a Yuxiu Li,^a XuechunXiao,^{a,b} Yude Wang,^{*a,b} and Igor Djerdj^{*c}

^aSchool of Physics Science and Technology, Yunnan University, 650091 Kunming, People's Republic of China.

^bYunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People's Republic of China. Fax: +8687165153832; Tel: +8687165031124; E-mail: ydwang@ynu.edu.cn.

^cRuđerBošković Institute, Bijenička 54, 10000 Zagreb, Croatia. Fax: +38514680114; Tel: +38514680113; E-mail: igor.djerdj@irb.hr.

Table S1. Structural and microstructural parameters extracted from the Rietveld refinement of powder XRD pattern.

Space group	$P 6_3 mc(186)$
Lattice parameters	
a (Å)	3.2520 (2)
<i>b</i> (Å)	3.2520 (2)
<i>c</i> (Å)	5.2092 (3)
Unit Cell Volume (Å ³)	47.7104
Zn	
x	0.33330
у	0.66670
Z	0.00000
0	
x	0.33330 (0)
у	0.66670(0)
Z	0.38592 (7)
Average apparent crystallite size (nm)	6.862
Average maximum microstrain (10-4)	4.2311
Discrepancy factor (profile-weighted residual error) (R_{WP} (%))	10.3
Bragg R-factor	2.93
Goodness-of-fit indicator (GoF-Index)	2.40

Fig. S1 Cross section SEM images (a) and (b) of the sensor, and surface SEM images (c) and (d) of the sensor.

Fig. S2 (a) A photograph of the WS-30 A testing system, (b) the basic testing principle (where V_h is the heating voltage, R_L is a constant load resistance, V_{out} is the sensor export voltage, and

 V_c is the working voltage (5 V).), (c) the schematic structure of the gas sensor, and (d) the

picture of a completed gas sensor.

Fig. S3 Variation of resistance with temperature.

Fig. S4. Gas responses of as-fabricated gas sensor toward 500 ppm n-butanol gas tested at different temperature.

Fig. S5. Dynamic response curves of as-fabricated sensor toward ethanol, acetone and isopropanol at 320 °C.

Fig. S6. The high-resolution XPS spectra of (a) Zn2p and (b) O1s of ZnOnanoparticles.